
作者:極光
来源:Python 技术
正则表达式相信大家应该都不陌生,本质上就是一种微小的、高度专业化的编程语言,使用它你可以为要匹配的可能字符串集指定规则。大多数编程语言正则语法基本相似,只是实现正则的函数库不同,今天就来跟大家一起了解下 Python 支持正则表达式的函数。
正则最简单的应用,就是对字符串进行操作,用来找出想要匹配的字符串,比如 Python 就只会匹配字符串 Python ,当然也可以设置不区分大小写,这样就可以匹配更多,比如 python、pyThon等。
如果还想来点复杂的匹配要怎么做,这就需要用到元字符了,下面就是所有的元字符:
// 元字符 [ ] ( ) . ^ $ * + ? { } |
这一对元字符主要用于指定字符类,也就是你想要匹配的一组字符。
比如:[asd] 就是要匹配任何字符 a, s, d,但如果想匹配 a b c d e …… x y z 是不是要把所有的都写一遍?当然不是了,这个我们可以写成 [a-z] 就行了,- 就是用来表示一个范围,再比如表示数字 1 至 9,可以写成 [1-9] 。
上面说的是包含的字符范围,如果想匹配不包含的范围要怎么做?这就要用到元字符 ^,比如匹配除了 n, u, 3 之外的字符,可以写成 [^nu3]。
还有一点需要注意,在 [ ] 中的元字符会作为普通字符匹配,比如 [$+] 就会匹配 $, +。
最后说下元字符 ,它的意义是用于转义所有元字符,也就是去掉元字符的特殊性,比如 {$\,其实就是匹配字串 {, $, 。
上面说了 [a-z] 可以匹配所有小写字母,[0-9] 用来匹配所有数字,这样已经够简单了,还有更简单的几种特殊范围表达方式。
字符说明.匹配除 "n" 之外的任何单个字符。要匹配包括 'n' 在内的任何字符,请使用象 '[.n]' 的模式。d相当于[0-9],即匹配一个数字字符。D相当于[^0-9],即匹配一个非数字字符。s相当于[fnrtv],也就是匹配任何空白字符,包括空格、制表符、换页符等等。S相当于[^fnrtv],匹配任何非空白字符。w相当于[a-zA-Z0-9_],匹配任何字母与数字字符。W相当于[^a-zA-Z0-9_],匹配任何非字母与数字字符。
上面这些特殊序列可以包含在字符类中,比如 [sd,] 即匹配任何空白字符,数字和 ,。
只是做到匹配字符串集合,肯定是不够的,它还有个更大的优势,那就是可以指定某一部分字符是重复的,并且可以指定重复的次数。
先说第一个表示重复的元字符 *,它用来指定前面一个字符可以重复0次或者多次。
比如 ap*le 将会匹配 apple,appple,ale 等等。
这里当重复正则时,匹配引擎会尝试尽可能多的重复它。当发现模式的后续部分不匹配,则匹配引擎将会回退并以较少的重复次数再次尝试。
另一个重复的元字符 +,它用来表示前一个字符可重复1次或多次。它跟 * 相比,其实就是少了一个重复0次,也就是上面 ap*le 换成 ap+le 不会出现匹配到 ale。
第三个元字符就是 ?,它用来表示前一个字符可重复0次或1次,把上面的例子换成 ap?le,其实就是两个字符串 ale 或 aple。
最后一个复杂些就是 {m,n},这个表示前一个字符可重复次数是一个区间,也就是最少重复m次,最多重复n次。
例如 ap{2,3}le将会匹配 apple,appple 两个字符串,其他都不会匹配。
在这里需要注意下,m 需要小于 n,当然 m 或 n 也是可以省略的。比如当 m=0 时,可以省略 m,当 n 为无穷大时,也可以省略 n。
对!你没看错,如果想使用正则表达式,首先得要把它编译成模式对象。编译成对象后,它就可以使用各种操作方法了,比如字串匹配查询或替换等。
Python 编译的方法是 re.compile('正则表达式'),比如 re.compile('ap?le')。
当然也可以传一些特殊的参数,比如忽略大小写,那上面的编译方法就可以写成 re.compile('ap?le', re.IGNORECASE),这样在匹配字串时就可以忽略大小写了。
那除了这个还有别的参数吗?有,下面我把一部分常用的参数列出来,对了参数还可以简写,比如刚才使用的 re.IGNORECASE 可以简写成 re.I,这样就方便多了。
以下是常用编译参数:
参数简写说明IGNORECASEI忽略大小写ASCIIA使几个转义(w、b、s和d)匹配仅与具有相应特征属性的 ASCII 字符匹配DOTALLS使 . 匹配任何字符,包括换行符LOCALEL进行区域设置感知匹配MULTILINEM多行匹配,影响 ^ 和 $VERBOSEX忽略正则字符串中的空格,除非空格位于字符类中或前面带有未转义的反斜杠,可以组织和缩进,还可以写注释
大部分都容易理解,只是最后一个参数 VERBOSE 可能不太容易理解,这里给大家个官方的例子看下就理解了。
test = re.compile(r"""
&[#] # 数字开始部分
(
0[0-7]+ # 八进制
| [0-9]+ # 小数形式
| x[0-9a-fA-F]+ # 十六进制
)
; # 结束分号
""", re.VERBOSE)
其实上面说的编译都只是在做准备,准备接下来要介绍的,正则表达式最重要的查询匹配。
常用匹配方法:
上面这些方法,如果匹配成功,会返回一个对象实例,其中包含匹配相关的信息:起始和终结位置、匹配的子串以及其它信息。
// 示例代码
import re
ret = re.compile('[0-9]+')
ret.match("apple") // 返回 None
ret.match("12189") // 返回 <re.Match object; span=(0, 5), match='12189'>
ret.match("121ab") // 返回 <re.Match object; span=(0, 3), match='121'>
好了,今天我们简单介绍了下正则表达式,以及在 Python 中如何使用正则表达式,其实以上这些只是基础,后续还会为大家介绍更多。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08