作者:Python进阶者
来源:Python爬虫与数据挖掘
大家好,我是吴老板。今天给大家分享一个可将Mongodb数据库里边的文件转换为表格文件的库,这个库是我自己开发的,有问题可以随时咨询我。
Mongo2file库是一个 Mongodb 数据库转换为表格文件的库。
在我的日常工作中经常和 mongodb 打交道,而从 mongodb 数据库中批量导出数据为其他格式则成为了刚需。
如果您跟我一样每次导出数据时都需要重新编写或到处寻找 脚本代码 的话,这个库可能会对您产生帮助。
mongo2file 依赖于 PyArrow 库。它是 C++ Arrow 的 Python 版本实现。
PyArrow 目前与 Python 3.7、3.8、3.9 和 3.10 兼容。
仓库地址: https://github.com/apache/arrow
如果您在 Windows 上遇到任何的导入问题或错误,您可能需要安装 Visual Studio 2015。
警告: PyArrow 目前只支持到 win64 位 ( Python 64bit ) 操作系统。
其次,除了常见的 csv、excel、以及 json 文件格式之外, mongo2file 还支持导出 pickle、feather、parquet 的二进制压缩文件。
pickle、feather、parquet 是 Python 序列化数据的一种文件格式, 它把数据转成二进制进行存储。从而大大减少读取的时间。
pip install mongo2file
快速开始
import os from mongo2file import MongoEngine
M = MongoEngine(
host=os.getenv('MONGO_HOST', '127.0.0.1'),
port=int(os.getenv('MONGO_PORT', 27017)),
username=os.getenv('MONGO_USERNAME', None),
password=os.getenv('MONGO_PASSWORD', None),
database=os.getenv('MONGO_DATABASE', 'test_'),
collection=os.getenv('MONGO_COLLECTION', 'test_')
) def to_csv(): result_ = M.to_csv() assert "successfully" in result_ def to_excel(): result_ = M.to_excel() assert "successfully" in result_ def to_json(): result_ = M.to_excel() assert "successfully" in result_ def to_pickle(): result_ = M.to_pickle() assert "successfully" in result_ def to_feather(): result_ = M.to_feather() assert "successfully" in result_ def to_parquet(): result_ = M.to_parquet() assert "successfully" in result_
to_csv()
当 MongoEngine 控制类指定了 mongodb 表名称时、将对数据表 (mongodb集合) 进行导出操作。
其类方法参数包括:
import os from mongo2file import MongoEngine """
作用于 MongoEngine 类未指定表名称时
""" M = MongoEngine(
host=os.getenv('MONGO_HOST', '127.0.0.1'),
port=int(os.getenv('MONGO_PORT', 27017)),
username=os.getenv('MONGO_USERNAME', None),
password=os.getenv('MONGO_PASSWORD', None),
database=os.getenv('MONGO_DATABASE', 'test_')
) def to_csv(): result_ = M.to_csv() assert "successfully" in result_ def to_excel(): result_ = M.to_excel() assert "successfully" in result_ def to_json(): result_ = M.to_json() assert "successfully" in result_
to_csv()
当 MongoEngine 控制类只指定了 mongodb 库名称时、将对数据库下所有集合进行导出操作。
对于 mongodb 的全表查询、条件查询、聚合操作、以及索引操作(当数据达到一定量级时建议) 并不是直接影响 数据导出的最大因素。
因为 mongodb 的查询一般而言都非常快速,主要的瓶颈在于读取 数据库 之后将数据转换为大列表存入 表格文件时所耗费的时间。
_这是一件非常可怕的事情_。
当没有多线程(当然这里的多线程并不是对同一文件进行并行操作,文件写入往往是线程不安全的)、 数据表查询语句无优化时,并且当数据达到一定量级时(比如 100w 行),单表单线程表现出来的效果真是让人窒息。
在 mongo2file 在进行大数据量导出时表现的并没有多么优秀。导致的主要原因可能是:
mongo2file 表现的不如人意时,我做出了一下改进:
Reference API
MongoEngine
MongoEngine( host='localhost', port=27017, username=None, password=None, database='测试库', collection='测试表_200000' )
to_csv(query, folder_path, filename, ...)
:param query: 数据库查询条件、字典类型、只作用于单表导出 :param folder_path: 指定导出的目录 :param filename: 指定导出的文件名 :param _id: 是否导出 _id 默认否 :param limit: 限制数据表查询的条数 :param is_block: 是否分块导出 :param block_size: 块大小、is_block 为 True 时生效
to_excel(query, folder_path, filename, ...)
:param query: 数据库查询条件、字典类型、只作用于单表导出 :param folder_path: 指定导出的目录 :param filename: 指定导出的文件名 :param _id: 是否导出 _id 默认否 :param limit: 限制数据表查询的条数 :param is_block: 是否分块导出 :param block_size: 块大小、is_block 为 True 时生效 :param mode: 导出模式, 枚举类型、sheet 或 xlsx, 当 is_block 为 True 时生效 :param ignore_error: 是否忽略错误、数据表中存在非序列化类型时使用、这将一定程度上影响程序的性能
to_json(query, folder_path, filename, ...)
:param query: 数据库查询条件、字典类型、只作用于单表导出 :param folder_path: 指定导出的目录 :param filename: 指定导出的文件名 :param _id: 是否导出 _id 默认否 :param limit: 限制数据表查询的条数 :param is_block: 是否分块导出 :param block_size: 块大小、is_block 为 True 时生效
to_pickle(query, folder_path, filename, ...)
:param query: 数据库查询条件、字典类型、只作用于单表导出 :param folder_path: 指定导出的目录 :param filename: 指定导出的文件名 :param _id: 是否导出 _id 默认否 :param limit: 限制数据表查询的条数
to_feather(query, folder_path, filename, ...)
:param query: 数据库查询条件、字典类型、只作用于单表导出 :param folder_path: 指定导出的目录 :param filename: 指定导出的文件名 :param _id: 是否导出 _id 默认否 :param limit: 限制数据表查询的条数
to_parquet(query, folder_path, filename, ...)
:param query: 数据库查询条件、字典类型、只作用于单表导出 :param folder_path: 指定导出的目录 :param filename: 指定导出的文件名 :param _id: 是否导出 _id 默认否 :param limit: 限制数据表查询的条数
大家好,我是吴老板。以上就是今天要分享的全部内容了,总的来说,Mongo2file库是一个可以将 Mongodb 数据库转换为表格文件的库,不仅支持导出csv、excel、以及 json 文件格式, 还支持导出 pickle、feather、parquet 的二进制压缩文件。欢迎大家积极尝试,在使用过程中有遇到任何问题,欢迎随时联系我。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31