
数据分析中常见的七种回归分析以及R语言实现(一)--简单线性模型
刚刚学习数据分析的人应该知道回归分析是作为预测用的一种模型,它主要是通过函数来表达因变量(连续值)和自变量变量的关系,通俗的来说就是Y和X的关系通过公式表达出来;这样能够表明因变量和自变量之间的显著关系并且是函数关系,还可以表明多个自变量对一个因变量的影响强度,回归分析主要运用在预测分析上,虽然说是预测,但是有时候我们的回归模型只是被用来解释现场,并不需要去预测,例如,科学家猜想人的体重和某种特定的食物消耗有关;
1、线性回归
在古典的线性回归模型中是要满足几个假定:
A假设自变量和因变量存在线性关系,具体的说就是假设因变量Y,是一些自变量X1,X2,..,XN的一个线性函数它的表达式
B零均值假定,就是假定回归线通过X与Y的条件均值组成的点;
C同方差假定,就是各个随机误差项的离散程度是相同的,也就是说对于每个X,随机项相对均值的分散程度是相同
D无自相关,就是随机扰动项之间是互不相关的,互补影响,也就是说随机扰动项是完全随机分布的
E因变量和扰动项是完全不相关的假定;
F扰动项正态性假定,就是假定扰动项服从均值为零,方差为司格马的正太分布
其中回归模型的表达式写法如下
其中e是随机扰动项,也有写法是这样,Y=a+bX+e,其中a是截距项,b是斜率,e是随机扰动项;
参数最优---最小二乘法
竟然存在参数,那么如何获取到最佳的参数呢,简单线性模型使用的普通最小二乘法,这里就不写明写详细步骤了,这个可以利用搜索引擎查的得到,我就说说它的主要思想就好,因为我们在拟合过程的时候我们要使回归线尽量靠近所有的样本点,这时候我们就要使它们残差尽量小,因为残差是有负有正,所以我们就采用平方去处理,采用平方和最小原则,通过求导,使其导数为零,求解得到最优的参数,这样就能够使回归模型应该使所有观察值的残差平方和最小;大致就是这样,文字描述有些吃力,有什么问题可以评论一起交流
这里我使用的我最近读和做笔记的R语言核心技术手册的包nutshell中的team.batting.00to08数据,这个数据是2000年到2008年棒球队的数据,我们想要看看棒球队的得分和每个变量的关系;
载入数据
library(nutshell)
data("team.batting.00to08")
查看数据的前六行
这就说明了数据已经被我们完全的载入进来了,也知道有多少个变量以及变量的名字,这时候我们要大体的知道一下大体的概括,这时候使用的summary()函数
summary(team.batting.00to08)
在棒球中RUNS就是球队的得分,时间是从2000年到2008年等
这时候想看看各个变量之间相关性如何
,粗劣的使用cor函数得到它们之间的相关系数矩阵,因为数据框存在字符,所以我们要提出第一第二列
cor(team.batting.00to08[,3:10])
大致可以判断的出来得分和跑动距离和全垒打(homerus)相关系数较大;
这里我们经常使用R语言里面的Lm函数去拟合以上变量,然后得到模型,然后使用summary()函数打印更多关于模型的信息
runs.lm <- lm(runs~singles+doubles+triples+homeruns+walks+hitbypitch+sacrificeflies+stolenbases+caughtstealing,data=team.batting.00to08)
summary(runs.lm)
从上图结果可以知道,R的可决系数是0.9114,模型F值较大,通过显著性检验,其中变量caughtstealing和stolenbases和runs不显著的关系,这个需要剔除;
我们可以手动剔除也可以使用step函数自动剔除
runs.lm_a <- lm(runs~singles+doubles+triples+homeruns+walks+hitbypitch+sacrificeflies,data=team.batting.00to08)
runs.lm_b<-step(runs.lm)
这个就讲到这里,这个下面几篇文章会讲到用什么方法得到这样的结果
参考文献代码
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10