京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析中常见的七种回归分析以及R语言实现(一)--简单线性模型
刚刚学习数据分析的人应该知道回归分析是作为预测用的一种模型,它主要是通过函数来表达因变量(连续值)和自变量变量的关系,通俗的来说就是Y和X的关系通过公式表达出来;这样能够表明因变量和自变量之间的显著关系并且是函数关系,还可以表明多个自变量对一个因变量的影响强度,回归分析主要运用在预测分析上,虽然说是预测,但是有时候我们的回归模型只是被用来解释现场,并不需要去预测,例如,科学家猜想人的体重和某种特定的食物消耗有关;
1、线性回归
在古典的线性回归模型中是要满足几个假定:
A假设自变量和因变量存在线性关系,具体的说就是假设因变量Y,是一些自变量X1,X2,..,XN的一个线性函数它的表达式
B零均值假定,就是假定回归线通过X与Y的条件均值组成的点;
C同方差假定,就是各个随机误差项的离散程度是相同的,也就是说对于每个X,随机项相对均值的分散程度是相同
D无自相关,就是随机扰动项之间是互不相关的,互补影响,也就是说随机扰动项是完全随机分布的
E因变量和扰动项是完全不相关的假定;
F扰动项正态性假定,就是假定扰动项服从均值为零,方差为司格马的正太分布
其中回归模型的表达式写法如下
其中e是随机扰动项,也有写法是这样,Y=a+bX+e,其中a是截距项,b是斜率,e是随机扰动项;
参数最优---最小二乘法
竟然存在参数,那么如何获取到最佳的参数呢,简单线性模型使用的普通最小二乘法,这里就不写明写详细步骤了,这个可以利用搜索引擎查的得到,我就说说它的主要思想就好,因为我们在拟合过程的时候我们要使回归线尽量靠近所有的样本点,这时候我们就要使它们残差尽量小,因为残差是有负有正,所以我们就采用平方去处理,采用平方和最小原则,通过求导,使其导数为零,求解得到最优的参数,这样就能够使回归模型应该使所有观察值的残差平方和最小;大致就是这样,文字描述有些吃力,有什么问题可以评论一起交流
这里我使用的我最近读和做笔记的R语言核心技术手册的包nutshell中的team.batting.00to08数据,这个数据是2000年到2008年棒球队的数据,我们想要看看棒球队的得分和每个变量的关系;
载入数据
library(nutshell)
data("team.batting.00to08")
查看数据的前六行
这就说明了数据已经被我们完全的载入进来了,也知道有多少个变量以及变量的名字,这时候我们要大体的知道一下大体的概括,这时候使用的summary()函数
summary(team.batting.00to08)
在棒球中RUNS就是球队的得分,时间是从2000年到2008年等
这时候想看看各个变量之间相关性如何
,粗劣的使用cor函数得到它们之间的相关系数矩阵,因为数据框存在字符,所以我们要提出第一第二列
cor(team.batting.00to08[,3:10])
大致可以判断的出来得分和跑动距离和全垒打(homerus)相关系数较大;
这里我们经常使用R语言里面的Lm函数去拟合以上变量,然后得到模型,然后使用summary()函数打印更多关于模型的信息
runs.lm <- lm(runs~singles+doubles+triples+homeruns+walks+hitbypitch+sacrificeflies+stolenbases+caughtstealing,data=team.batting.00to08)
summary(runs.lm)
从上图结果可以知道,R的可决系数是0.9114,模型F值较大,通过显著性检验,其中变量caughtstealing和stolenbases和runs不显著的关系,这个需要剔除;
我们可以手动剔除也可以使用step函数自动剔除
runs.lm_a <- lm(runs~singles+doubles+triples+homeruns+walks+hitbypitch+sacrificeflies,data=team.batting.00to08)
runs.lm_b<-step(runs.lm)
这个就讲到这里,这个下面几篇文章会讲到用什么方法得到这样的结果
参考文献代码
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29