数据分析中常见的七种回归分析以及R语言实现(一)--简单线性模型
刚刚学习数据分析的人应该知道回归分析是作为预测用的一种模型,它主要是通过函数来表达因变量(连续值)和自变量变量的关系,通俗的来说就是Y和X的关系通过公式表达出来;这样能够表明因变量和自变量之间的显著关系并且是函数关系,还可以表明多个自变量对一个因变量的影响强度,回归分析主要运用在预测分析上,虽然说是预测,但是有时候我们的回归模型只是被用来解释现场,并不需要去预测,例如,科学家猜想人的体重和某种特定的食物消耗有关;
1、线性回归
在古典的线性回归模型中是要满足几个假定:
A假设自变量和因变量存在线性关系,具体的说就是假设因变量Y,是一些自变量X1,X2,..,XN的一个线性函数它的表达式
B零均值假定,就是假定回归线通过X与Y的条件均值组成的点;
C同方差假定,就是各个随机误差项的离散程度是相同的,也就是说对于每个X,随机项相对均值的分散程度是相同
D无自相关,就是随机扰动项之间是互不相关的,互补影响,也就是说随机扰动项是完全随机分布的
E因变量和扰动项是完全不相关的假定;
F扰动项正态性假定,就是假定扰动项服从均值为零,方差为司格马的正太分布
其中回归模型的表达式写法如下
其中e是随机扰动项,也有写法是这样,Y=a+bX+e,其中a是截距项,b是斜率,e是随机扰动项;
参数最优---最小二乘法
竟然存在参数,那么如何获取到最佳的参数呢,简单线性模型使用的普通最小二乘法,这里就不写明写详细步骤了,这个可以利用搜索引擎查的得到,我就说说它的主要思想就好,因为我们在拟合过程的时候我们要使回归线尽量靠近所有的样本点,这时候我们就要使它们残差尽量小,因为残差是有负有正,所以我们就采用平方去处理,采用平方和最小原则,通过求导,使其导数为零,求解得到最优的参数,这样就能够使回归模型应该使所有观察值的残差平方和最小;大致就是这样,文字描述有些吃力,有什么问题可以评论一起交流
这里我使用的我最近读和做笔记的R语言核心技术手册的包nutshell中的team.batting.00to08数据,这个数据是2000年到2008年棒球队的数据,我们想要看看棒球队的得分和每个变量的关系;
载入数据
library(nutshell)
data("team.batting.00to08")
查看数据的前六行
这就说明了数据已经被我们完全的载入进来了,也知道有多少个变量以及变量的名字,这时候我们要大体的知道一下大体的概括,这时候使用的summary()函数
summary(team.batting.00to08)
在棒球中RUNS就是球队的得分,时间是从2000年到2008年等
这时候想看看各个变量之间相关性如何
,粗劣的使用cor函数得到它们之间的相关系数矩阵,因为数据框存在字符,所以我们要提出第一第二列
cor(team.batting.00to08[,3:10])
大致可以判断的出来得分和跑动距离和全垒打(homerus)相关系数较大;
这里我们经常使用R语言里面的Lm函数去拟合以上变量,然后得到模型,然后使用summary()函数打印更多关于模型的信息
runs.lm <- lm(runs~singles+doubles+triples+homeruns+walks+hitbypitch+sacrificeflies+stolenbases+caughtstealing,data=team.batting.00to08)
summary(runs.lm)
从上图结果可以知道,R的可决系数是0.9114,模型F值较大,通过显著性检验,其中变量caughtstealing和stolenbases和runs不显著的关系,这个需要剔除;
我们可以手动剔除也可以使用step函数自动剔除
runs.lm_a <- lm(runs~singles+doubles+triples+homeruns+walks+hitbypitch+sacrificeflies,data=team.batting.00to08)
runs.lm_b<-step(runs.lm)
这个就讲到这里,这个下面几篇文章会讲到用什么方法得到这样的结果
参考文献代码
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16