京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析中常见的七种回归分析以及R语言实现(二)---逐步回归
接着上篇文章,这里讲一下逐步回归,那么大家应该都知道逐步回归是什么样的作用了,就是为我们剔除一些不重要或者不显著的自变量,使得回归方程最优形式去预测因变量;其中主要思路将所有自变量按照对因变量Y的作用大小,显著程度,由大到小引入回归方程中;其中主要通过几个统计值来识别重要变量,可决系数,T值和AIC值,通过这三个值来添加和删除自变量来拟合模型。
大概步骤这样,首先我们在实施每一步都要对引入方程的变量计算其偏回归平方和,为什么我们要计算偏回归平方和呢,这个好比偏相关系数一样,这个主要放映自变量和因变量之间的相关程度的偏差平方和,然后选择一个偏回归平方和最小的变量进行显著性检验,如果显著则保留,这时方程中其他的几个变量也都不需要剔除,因为最小偏差平方和都显著了,其他的更不需要了,相反,如果不显著,则要提出变量,然后按偏回归平方和小到大依次对方程中其他变量进行F检验,将对Y不显著的变量全部提出,保留的都是显著,接着再对未引入回归方程中的变量分别计算其偏回归平方和,并选取其中偏回归平方和最大的一个变量,同样进行显著性检验,显著则引入该变量进入方程,,这个过程一直下去,直到在回归方程中的变量都不能剔除而又无新变量可以引入时,逐步回归过程就结束了;按照其选择方式的可以分为三种,向前逐步回归法,每次增加一个自变量到模型中,直到添加变量不会使模型有所改进为止;向后逐步回归从模型包含所有自变量开始,一次删除一个变量,直到会降低模型质量为止;还有一种是是向前向后逐步回归,通常我们称之为逐步回归,就是我们上段讲一样,每次的引入然后重新评估变量,然后剔除对模型没有贡献的变量,一直到模型最优为止;
这里我们就使用R语言实战里面的代码给大家做个实例,这里使用的是MASS包中的stepAIC()函数可以实现逐步回归模型,这个依据的AIC准则,模型的话就使用我们第一篇文章中的模型作为参照
载入包和数据集
library(nutshell)
library(MASS)
data(team.batting.00to08)
查看前六行
head(team.batting.00to08)
数据成功载入,这时候我们进行向后逐步回归
runs.lm <- lm(runs~singles+doubles+triples+homeruns+walks+hitbypitch+sacrificeflies+stolenbases+caughtstealing,data=team.batting.00to08)
lm_back<-stepAIC(runs.lm,direction = "backward")
结果太长,分段截图,开始AIC值
最后得到AIC值已经结果式,AIC值的减少所以模型得到了优化,我们的逐步回归法是有效的
最后我们使用使用summary()函数打印模型结果
summary(lm_back)
从上图得知全部变量都显著有效,这里就说到这里,有什么问题的话下方评论一起交流
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23