作者:俊欣
来源:关于数据分析与可视化
今天我们继续来讲一下Pandas和SQL之间的联用,我们其实也可以在Pandas当中使用SQL语句来筛选数据,通过Pandasql模块来实现该想法,首先我们来安装一下该模块
pip install pandasql
要是你目前正在使用jupyter notebook,也可以这么来下载
!pip install pandasql
我们首先导入数据
import pandas as pd from pandasql import sqldf
df = pd.read_csv("Dummy_Sales_Data_v1.csv", sep=",")
df.head()
output
我们先对导入的数据集做一个初步的探索性分析,
df.info()
output
<class 'pandas.core.frame.DataFrame'> RangeIndex: 9999 entries, 0 to 9998 Data columns (total 12 columns):
# Column Non-Null Count Dtype
--- ------ -------------- ----- 0 OrderID 9999 non-null int64 1 Quantity 9999 non-null int64 2 UnitPrice(USD) 9999 non-null int64 3 Status 9999 non-null object 4 OrderDate 9999 non-null object 5 Product_Category 9963 non-null object 6 Sales_Manager 9999 non-null object 7 Shipping_Cost(USD) 9999 non-null int64 8 Delivery_Time(Days) 9948 non-null float64 9 Shipping_Address 9999 non-null object 10 Product_Code 9999 non-null object 11 OrderCode 9999 non-null int64
dtypes: float64(1), int64(5), object(6)
memory usage: 937.5+ KB
再开始进一步的数据筛选之前,我们再对数据集的列名做一个转换,代码如下
df.rename(columns={"Shipping_Cost(USD)":"ShippingCost_USD", "UnitPrice(USD)":"UnitPrice_USD", "Delivery_Time(Days)":"Delivery_Time_Days"},
inplace=True)
df.info()
output
<class 'pandas.core.frame.DataFrame'> RangeIndex: 9999 entries, 0 to 9998 Data columns (total 12 columns):
# Column Non-Null Count Dtype
--- ------ -------------- ----- 0 OrderID 9999 non-null int64 1 Quantity 9999 non-null int64 2 UnitPrice_USD 9999 non-null int64 3 Status 9999 non-null object 4 OrderDate 9999 non-null object 5 Product_Category 9963 non-null object 6 Sales_Manager 9999 non-null object 7 ShippingCost_USD 9999 non-null int64 8 Delivery_Time_Days 9948 non-null float64 9 Shipping_Address 9999 non-null object 10 Product_Code 9999 non-null object 11 OrderCode 9999 non-null int64
dtypes: float64(1), int64(5), object(6)
memory usage: 937.5+ KB
我们先尝试筛选出OrderID、Quantity、Sales_Manager、Status等若干列数据,用SQL语句应该是这么来写的
SELECT OrderID, Quantity, Sales_Manager,
Status, Shipping_Address, ShippingCost_USD
FROM df
与Pandas模块联用的时候就这么来写
query = "SELECT OrderID, Quantity, Sales_Manager,
Status, Shipping_Address, ShippingCost_USD
FROM df" df_orders = sqldf(query) df_orders.head()
output
我们在SQL语句当中添加指定的条件进而来筛选数据,代码如下
query = "SELECT *
FROM df_orders
WHERE Shipping_Address = 'Kenya'" df_kenya = sqldf(query) df_kenya.head()
output
而要是条件不止一个,则用AND来连接各个条件,代码如下
query = "SELECT * FROM df_orders WHERE Shipping_Address = 'Kenya' AND Quantity < 40 AND Status IN ('Shipped', 'Delivered')"
df_kenya = sqldf(query)
df_kenya.head()
output
同理我们可以调用SQL当中的GROUP BY来对筛选出来的数据进行分组,代码如下
query = "SELECT Shipping_Address, COUNT(OrderID) AS Orders FROM df_orders GROUP BY Shipping_Address"
df_group = sqldf(query)
df_group.head(10)
output
而排序在SQL当中则是用ORDER BY,代码如下
query = "SELECT Shipping_Address, COUNT(OrderID) AS Orders FROM df_orders GROUP BY Shipping_Address ORDER BY Orders"
df_group = sqldf(query)
df_group.head(10)
output
我们先创建一个数据集,用于后面两个数据集之间的合并,代码如下
query = "SELECT OrderID,
Quantity,
Product_Code,
Product_Category,
UnitPrice_USD
FROM df" df_products = sqldf(query) df_products.head()
output
我们这里采用的两个数据集之间的交集,因此是INNER JOIN,代码如下
query = "SELECT T1.OrderID,
T1.Shipping_Address,
T2.Product_Category
FROM df_orders T1
INNER JOIN df_products T2
ON T1.OrderID = T2.OrderID" df_combined = sqldf(query) df_combined.head()
output
在SQL当中的LIMIT是用于限制查询结果返回的数量的,我们想看查询结果的前10个,代码如下
query = "SELECT OrderID, Quantity, Sales_Manager, Status, Shipping_Address,
ShippingCost_USD FROM df LIMIT 10"
df_orders_limit = sqldf(query)
df_orders_limit
output
数据分析咨询请扫描二维码
CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13爬虫技术在数据分析中扮演着至关重要的角色,其主要作用体现在以下几个方面: 数据收集:爬虫能够自动化地从互联网上抓取大量数 ...
2024-11-13在数据分析中,数据可视化是一种将复杂数据转化为图表、图形或其他可视形式的技术,旨在通过直观的方式帮助人们理解数据的含义与 ...
2024-11-13在现代银行业中,数字化用户行为分析已成为优化产品和服务、提升客户体验和提高业务效率的重要工具。通过全面的数据采集、深入的 ...
2024-11-13在这个数据飞速增长的时代,企业若想在竞争中占据优势,必须充分利用数据分析优化其营销策略。数据不仅有助于理解市场趋势,还可 ...
2024-11-13数据分析行业的就业趋势显示出多个积极的发展方向。随着大数据和人工智能技术的不断进步,数据分析在各行各业中的应用变得越来越 ...
2024-11-13市场数据分析是一门涉及多种技能和工具的学科,对企业在竞争激烈的市场中保持竞争力至关重要。通过数据分析,企业不仅可以了解当 ...
2024-11-13数据分析与数据挖掘是数据科学领域中两个关键的组成部分,它们各有独特的目标、方法和应用场景。尽管它们经常在实际应用中结合使 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13作为一名业务分析师,你肩负着将业务需求转化为技术解决方案的重任。面试这一角色时,涉及的问题多种多样,涵盖技术技能、分析能 ...
2024-11-13自学数据分析可能看似一项艰巨的任务,尤其在开始时。但是,通过一些策略和方法,你可以系统地学习和掌握数据分析的相关知识和技 ...
2024-11-10Excel是数据分析领域中的一款强大工具,它凭借其灵活的功能和易用的界面,成为了许多数据分析师和从业者的首选。无论是简单的数 ...
2024-11-10在快速发展的商业环境中,数据分析能力已经成为许多行业的核心竞争力。无论是初学者还是经验丰富的专家,搭建一个有效的数据分析 ...
2024-11-10