数据分析中常见的七种回归分析以及R语言实现(三)---岭回归
我们在回归分析的时候,古典模型中有一个基本的假定就是自变量之间是不相关的,但是如果我们在拟合出来的回归模型出现了自变量之间高度相关的话,可能对结果又产生影响,我们称这个问题为多重共线性,多重共线性又分为两种,一种是完全多重共线性,还有一种是不完全多重共线性;
产生的原因有几个方面
1、变量之间存在内部的联系
2、变量之间存在共同的趋势等
造成的后果分两部分
完全多重共线性造成的后果
1、当自变量线性相关的时候,参数将无法唯一确定,参数的方差将趋近于无穷大,这时候无法使用最小二乘法
不完全多重共线性造成的后果
1、参数估计量的方差随着多重共线性的严重程度的增加而增加,但是参数是可以估计的
2、进行统计检验时容易删除掉重要解释变量
因为当多重共线性的时候容易造成自变量对因变量不显著,从模型中错误的剔除,这样容易删除重要解释变量的设定;
3、参数的置信区间明显扩大
因为由于存在多重共线性。我们的参数估计都有较大的标准差,因此参数真值的置信区间也将增大
那么我们怎么去判断一个模型上存在多重共线性呢?
根据经验表明,多重共线性存在的一个标志就是就模型存在较大的标准差,和较小的T统计量,如果一个模型的可决系数R^2很大,F检验高度限制,但偏回归系数的T检验几乎都不显著,那么模型很可能是存在多重共线性了。因为通过检验,虽然各个解释变量对因变量的共同影响高度显著,但每个解释变量的单独影响都不显著,我们无法判断哪个解释变量对被解释变量的影响更大
1、可以利用自变量之间的简单相关系数检验
这个方法是一个简便的方法,一般而言,如果每两个解释变量的简单相关系数一般较高,则可以认为是存在着严重的多重共线性
2、方差膨胀因子
在回归中我们用VIF表示方差膨胀因子
表达式 VIF=1/(1-R^2)
随着多重共线性的严重程度增强,方差膨胀因子会逐渐的变大,一般的当VIF>=10的时候,我们就可以认为存在严重多重共线性;
在R语言中car包中的vif()函数可以帮我们算出这个方差膨胀一找你
这就介绍这两个了,其实还有好多方法,大家可以可以私底下查,或者和我一起交流;
多重共线性的解决办法
因为存在多重共线性,我们还是拟合模型的;当然会有解决办法,这里我就介绍一下常用的方法岭回归;其他的方法也有,这里就不说了;
这里就说说大概的思想,具体推导的步骤这里就不写,有兴趣的可以网上查查;在多重共线性十分严重下,两个共线变量的系数之间的二维联合分布是一个山岭曲面,曲面上的每一个点对应一种残差平方和,点的位置越高,相应的残差平方和越小。因此山岭最高点和残差平方和的最小值相对应,相应的参数值便是参数的最小二乘法估计值,但由于多重共线性的存在最小二乘法估计量已经不适用,一个自然的想法就是应寻找其他的更适合的估计量,这种估计量既要具有较小的方差,又不能使残差平方和过分偏离其极小值。在参数的联合分布曲面上,能满足这种要求的点只能沿着山岭寻找,这就是岭回归法;
这个方法实质是牺牲了无偏性来寻求参数估计的最小方差性;
缺点:通常岭回归方程的R平方值会稍低于普通回归分析,但回归系数的显著性往往明显高于普通回归,在存在共线性问题和病态数据偏多的研究中有较大的实用价值
这里使用可能要使用到car和MASS,由于谢老师已经写了详细的过程,这里我就全程照搬了,偷了个懒,写个代码过程其实也有些累的;
1 分别使用岭回归和Lasso解决薛毅书第279页例6.10的回归问题
cement <- data.frame(X1 = c(7, 1, 11, 11, 7, 11, 3, 1, 2, 21, 1, 11, 10), X2 = c(26,
29, 56, 31, 52, 55, 71, 31, 54, 47, 40, 66, 68), X3 = c(6, 15, 8, 8, 6,
9, 17, 22, 18, 4, 23, 9, 8), X4 = c(60, 52, 20, 47, 33, 22, 6, 44, 22, 26,
34, 12, 12), Y = c(78.5, 74.3, 104.3, 87.6, 95.9, 109.2, 102.7, 72.5, 93.1,
115.9, 83.8, 113.3, 109.4))
cement
## X1 X2 X3 X4 Y
## 1 7 26 6 60 78.5
## 2 1 29 15 52 74.3
## 3 11 56 8 20 104.3
## 4 11 31 8 47 87.6
## 5 7 52 6 33 95.9
## 6 11 55 9 22 109.2
## 7 3 71 17 6 102.7
## 8 1 31 22 44 72.5
## 9 2 54 18 22 93.1
## 10 21 47 4 26 115.9
## 11 1 40 23 34 83.8
## 12 11 66 9 12 113.3
## 13 10 68 8 12 109.4
lm.sol <- lm(Y ~ ., data = cement)
summary(lm.sol)
##
## Call:
## lm(formula = Y ~ ., data = cement)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.175 -1.671 0.251 1.378 3.925
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 62.405 70.071 0.89 0.399
## X1 1.551 0.745 2.08 0.071 .
## X2 0.510 0.724 0.70 0.501
## X3 0.102 0.755 0.14 0.896
## X4 -0.144 0.709 -0.20 0.844
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.45 on 8 degrees of freedom
## Multiple R-squared: 0.982, Adjusted R-squared: 0.974
## F-statistic: 111 on 4 and 8 DF, p-value: 4.76e-07
# 从结果看,截距和自变量的相关系数均不显著。
# 利用car包中的vif()函数查看各自变量间的共线情况
library(car)
vif(lm.sol)
## X1 X2 X3 X4
## 38.50 254.42 46.87 282.51
# 从结果看,各自变量的VIF值都超过10,存在多重共线性,其中,X2与X4的VIF值均超过200.
plot(X2 ~ X4, col = "red", data = cement)
接下来,利用MASS包中的函数lm.ridge()来实现岭回归。下面的计算试了151个lambda值,最后选取了使得广义交叉验证GCV最小的那个。
library(MASS)
##
## Attaching package: 'MASS'
##
## The following object is masked _by_ '.GlobalEnv':
##
## cement
ridge.sol <- lm.ridge(Y ~ ., lambda = seq(0, 150, length = 151), data = cement,
model = TRUE)
names(ridge.sol) # 变量名字
## [1] "coef" "scales" "Inter" "lambda" "ym" "xm" "GCV" "kHKB"
## [9] "kLW"
ridge.sol$lambda[which.min(ridge.sol$GCV)] ##找到GCV最小时的lambdaGCV
## [1] 1
ridge.sol$coef[which.min(ridge.sol$GCV)] ##找到GCV最小时对应的系数
## [1] 7.627
par(mfrow = c(1, 2))
# 画出图形,并作出lambdaGCV取最小值时的那条竖直线
matplot(ridge.sol$lambda, t(ridge.sol$coef), xlab = expression(lamdba), ylab = "Cofficients",
type = "l", lty = 1:20)
abline(v = ridge.sol$lambda[which.min(ridge.sol$GCV)])
# 下面的语句绘出lambda同GCV之间关系的图形
plot(ridge.sol$lambda, ridge.sol$GCV, type = "l", xlab = expression(lambda),
ylab = expression(beta))
abline(v = ridge.sol$lambda[which.min(ridge.sol$GCV)])
par(mfrow = c(1, 1))
# 从上图看,lambda的选择并不是那么重要,只要不离lambda=0太近就没有多大差别。
# 下面利用ridge包中的linearRidge()函数进行自动选择岭回归参数
library(ridge)
mod <- linearRidge(Y ~ ., data = cement)
summary(mod)
##
## Call:
## linearRidge(formula = Y ~ ., data = cement)
##
##
## Coefficients:
## Estimate Scaled estimate Std. Error (scaled) t value (scaled)
## (Intercept) 83.704 NA NA NA
## X1 1.292 26.332 3.672 7.17
## X2 0.298 16.046 3.988 4.02
## X3 -0.148 -3.279 3.598 0.91
## X4 -0.351 -20.329 3.996 5.09
## Pr(>|t|)
## (Intercept) NA
## X1 7.5e-13 ***
## X2 5.7e-05 ***
## X3 0.36
## X4 3.6e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Ridge parameter: 0.01473, chosen automatically, computed using 2 PCs
##
## Degrees of freedom: model 3.01 , variance 2.84 , residual 3.18
# 从模型运行结果看,测岭回归参数值为0.0147,各自变量的系数显著想明显提高(除了X3仍不显著)
最后,利用Lasso回归解决共线性问题
library(lars)
## Loaded lars 1.2
x = as.matrix(cement[, 1:4])
y = as.matrix(cement[, 5])
(laa = lars(x, y, type = "lar")) #lars函数值用于矩阵型数据
##
## Call:
## lars(x = x, y = y, type = "lar")
## R-squared: 0.982
## Sequence of LAR moves:
## X4 X1 X2 X3
## Var 4 1 2 3
## Step 1 2 3 4
# 由此可见,LASSO的变量选择依次是X4,X1,X2,X3
plot(laa) #绘出图数据分析培训
summary(laa) #给出Cp值
## LARS/LAR
## Call: lars(x = x, y = y, type = "lar")
## Df Rss Cp
## 0 1 2716 442.92
## 1 2 2219 361.95
## 2 3 1918 313.50
## 3 4 48 3.02
## 4 5 48 5.00
# 根据课上对Cp含义的解释(衡量多重共线性,其值越小越好),我们取到第3步,使得Cp值最小,也就是选择X4,X1,X2这三个变量
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16