作者: 俊欣
来源:关于数据分析与可视化
对于机器学习爱好者而言,很多时候我们需要将建好的模型部署在线上,实现前后端的交互,今天小编就通过Flask以及Streamlit这两个框架实现机器学习模型的前后端交互。
首先是模型的建立,小编这回为了省事儿建立一个非常简单的二分法模型,所引用的数据集如下所示
import pandas as pd
df = pd.read_csv("data.csv")
df.head()
output
Height Weight Species 0 88.9 48.3 Dog 1 90.2 47.4 Dog 2 82.7 44.8 Dog 3 81.4 48.2 Dog 4 83.5 39.9 Dog
所涉及到的特征也就两列分别是“Hight”以及“Weight”也就是身高和体重,我们需要通过这两个特征来预测它到底是“猫”还是“狗”,代码如下
X = df[["Height", "Weight"]] y = df["Species"]
clf = GaussianNB()
clf.fit(X, y)
当然小编为了省事儿这里并没有进行训练集和测试集的区分,也没有进行任何的调参以及模型的优化,只是简单的建立了一个朴素贝叶斯的二分类模型。接下来我们将建立好的模型保存下来
import joblib
joblib.dump(clf, "clf.pkl")
前端页面主要是由一系列的HTML代码写成的,代码如下
<!DOCTYPE html> <html> <head> <title>Your Machine Learning App</title> </head> <body> <form name="form", method="POST", style="text-align: center;"> <br> Height: <input type="number" name="height", placeholder="Enter height in cm" required/> <br><br> Weight: <input type="number" name="weight", placeholder="Enter weight in kg" required/> <br><br> <button value="Submit">Run</button> </form> <p style="text-align: center;">{{ output }}</p> </body> </html>
输出结果如下:
我们可以看到有两个输入框分别代表的是身高与体重,以及运行的按钮键。接下来我们来写后端的逻辑代码,当前端传过来数据的时候,也就是身高与体重的数据的时候,后端的代码来调用已经训练好的模型并且做出预测,然后显示在前端的页面上。在Flask框架中后端的业务代码大致如下
from flask import Flask, request, render_template import pandas as pd import joblib # 声明是一个Flask应用 app = Flask(__name__) # 主要业务逻辑 # ------------------ # 运行整体的应用 if __name__ == '__main__':
app.run(debug = True)
那么在本篇文章的项目背景下,代码如下
@app.route('/', methods=['GET', 'POST']) def main(): # 表单数据提交,POST请求 if request.method == "POST": # 调用已经训练好的模型 clf = joblib.load("clf.pkl") # 从输入框中获取身高与体重数据 height = request.form.get("height")
weight = request.form.get("weight") # 转变成DataFrame格式 X = pd.DataFrame([[height, weight]], columns = ["Height", "Weight"]) # 获取预测值 prediction = clf.predict(X)[0] else: prediction = "" return render_template("website.html", output = prediction)
然后我们运行整个脚本,效果如下
我们试着输入一些身高与体重的值,看一下返回的结果,效果如下
下面我们来看一下将模型部署在Streamlit框架下该如何来操作。在Streamlit框架中没有特别明显的前后端代码的分离,代码如下
import streamlit as st import pandas as pd import joblib # 标题 st.header("Streamlit Machine Learning App") # 输入框 height = st.number_input("Enter Height")
weight = st.number_input("Enter Weight") # 点击提交按钮 if st.button("Submit"): # 引入训练好的模型 clf = joblib.load("clf.pkl") # 转换成DataFrame格式的数据 X = pd.DataFrame([[height, weight]],
columns=["Height", "Weight"]) # 获取预测出来的值 prediction = clf.predict(X)[0] # 返回预测的值 st.text(f"This instance is a {prediction}")
最后生成的页面如下
我们在终端中运行以下命令
streamlit run streamlit_model.py
最后我尝试在输入框中填入一些虚构的数字,看一下出来的结果是什么样的,如下
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21