
作者:麦叔
来源:麦叔编程
今年开始,我在翻译一本大部头的,比较经典的的Python进阶书籍。
有空就翻译几页。这本书不仅是教你很多进阶的Python的语法,更重要的是讲解很多设计方法和设计思想。
这些方法和思想,一点点叠加起来,就会让你从一个普通的程序员变成一个很专业的程序员。至少看起来挺唬人的!
昨天我在翻译关于docstring的章节。书中举的一个例子,把一个很普通的类,转变成了跟Python内置的库一样专业的代码。
我感觉眼睛一亮,觉得有必要跟大家分享一下。
这个类的功能很简单:
想想看,你会怎么写呢?
我就直接分享我认为比较专业的代码吧,请仔细阅读,品味其中专业的地方:
class Point: """
Represents a point in two-dimensional geometric coordinates
>>> p_0 = Point()
>>> p_1 = Point(3, 4)
>>> p_0.calculate_distance(p_1)
5.0
""" def __init__(self, x: float = 0, y: float = 0) -> None: """
Initialize the position of a new point. The x and y
coordinates can be specified. If they are not, the
point defaults to the origin.
:param x: float x-coordinate
:param y: float x-coordinate
""" self.move(x, y) def move(self, x: float, y: float) -> None: """
Move the point to a new location in 2D space.
:param x: float x-coordinate
:param y: float x-coordinate
""" self.x = x
self.y = y def reset(self) -> None: """
Reset the point back to the geometric origin: 0, 0
""" self.move(0, 0) def calculate_distance(self, other: "Point") -> float: """
Calculate the Euclidean distance from this point
to a second point passed as a parameter.
:param other: Point instance
:return: float distance
""" return math.hypot(self.x - other.x, self.y - other.y)
来说一下,为什么我觉得这段代码是专业级的:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10