作者:俊欣
来源:关于数据分析与可视化
相信大家一定会seaborn或者matplotlib这几个模块感到并不陌生,通常大家会用这几个模块来进行可视化图表的制作,为了让我们绘制的图表更具交互性,今天小编来给大家介绍个组件。
首先我们通过pip命令来下载该模块
pip install ipywidgets
该模块中的interact函数可以和我们自定义的函数相结合,随着我们输入的不断变化,输出也会产生相应的不同结果,我们来看一个简单的案例
from ipywidgets import interact def f(x): print(f"The square value is: {x**2}")
interact(f, x=10)
output
当我们拖动当中的圆点的时候,输出的结果也随之变化。当然我们也可以将其当做是装饰器来使用,代码如下
@interact(x=10) def f(x): print(f"The square value is: {x**2}")
output
上面的自定义函数中,当然我们可以自行设定横轴当中的最大值与最小值,以及每拖动一次x值的变化(和Python当中的range函数类似),
interact(f, x=widgets.IntSlider(min=-10, max=30, step=1, value=10))
output
而当输入框中的参数不止一个参数的时候,可以有不止一个的滑动条,代码如下
import ipywidgets as widgets
one = widgets.IntSlider(min = 0, max = 10)
two = widgets.IntSlider(min = 0, max = 100)
three = widgets.IntSlider(min = 0, max = 1000)
ui = widgets.HBox([one, two, three])
def func(x, y, z): print(f"The first value is: {x + 2}") print(f"The second value is: {y * 2}") print(f"The third value is: {z ** 2}")
out = widgets.interactive_output(func, {"x": one, "y": two, "z": three})
display(ui, out)
output
当参数类型是字符串时,则是需要通过输入框的形式来进行交互,代码如下
def f_2(x): print(f"The value is: {x}")
interact(f_2, x="Hello World")
output
而当我们输入的X参数是一个列表里面有着若干个字符串的时候,则会在输入框中出现个下拉框,如下所示
interact(f_2, x=["Hello World", "你好"])
output
然后我们来看看该模块和seaborn之间的结合,我们先用Pandas模块来读取数据集,代码如下
import pandas as pd
df = pd.read_csv("data.csv")
df.head()
output
我们简单地来画一张直方图,代码如下
import seaborn as sns import matplotlib.pyplot as plt
%matplotlib inline g = sns.countplot(data = df, x="Gender", hue="Attrition")
output
我们可以将绘制图表的这一行代码封装成一个函数,将代码中的“x”甚至是“hue”作为是输入的参数,代码如下
## 筛选出离散型变量的特征 categorical_columns = [column for column in df.columns if df[column].dtype == "object"] ## 做成下拉框的形式来进行交互 dd = widgets.Dropdown(options=categorical_columns, value=categorical_columns[0], description="Select a column") @interact(column=dd) def draw_countplot(column): g = sns.countplot(data = df, x=column, hue="Attrition")
output
我们可以在下拉框中选择不同的离散型变量的特征从而绘制出不同的图表,当然一个下拉框可能有人会觉得有点少,我们可以再来扩展一下
## 两个下拉框 dd1 = widgets.Dropdown(options=categorical_columns, value=categorical_columns[0], description="Column")
dd2 = widgets.Dropdown(options=categorical_columns, value=categorical_columns[0], description="Hue")
ui = widgets.HBox([dd1, dd2]) ## 绘制图表的函数 def draw_countplot(column, hue):
g = sns.countplot(data = df, x=column, hue=hue) ## X轴方向的标记会旋转60度 if len(df[column].unique()) > 3:
g.tick_params(axis="x", rotation=60) out = widgets.interactive_output(draw_countplot, {'column':dd1, "hue": dd2}) ## 最终将图表呈现出来 display(ui, out)
output
当然有可能会觉得都是输入框的话会有点无聊,那我们在输入框的同时加入一个滑动条,对应的是输入的参数是整型或者是浮点数时
## 两个输入框还有一个滑动条 dd1 = widgets.Dropdown(options=numeric_columns, description="Column1")
dd2 = widgets.Dropdown(options=numeric_columns, description="Column2")
slider = widgets.IntSlider(min=df['Age'].min(), max=df["Age"].max(), description="Max Age")
ui = widgets.HBox([dd1, dd2, slider]) ## 绘制图表的函数 def draw_relplot(column1, column2, age):
p = sns.relplot(data=df[df['Age']<=age], x=column1, y=column2) out = widgets.interactive_output(draw_countplot, {"column1": dd1, "column2": dd2, "age": slider}) ## 将最终的图表给呈现出来 display(ui, out)
output
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14