
作者:俊欣
来源:关于数据分析与可视化
相信大家都用在Excel当中使用过数据透视表(一种可以对数据动态排布并且分类汇总的表格格式),也体验过它的强大功能,在Pandas模块当中被称作是pivot_table,今天小编就和大家来详细聊聊该函数的主要用途。
那我们第一步仍然是导入模块并且来读取数据,数据集是北美咖啡的销售数据,包括了咖啡的品种、销售的地区、销售的利润和成本、销量以及日期等等
import pandas as pd def load_data(): return pd.read_csv('coffee_sales.csv', parse_dates=['order_date'])
那小编这里将读取数据封装成了一个自定义的函数,读者也可以根据自己的习惯来进行数据的读取
df = load_data() df.head()
output
通过调用info()函数先来对数据集有一个大致的了解
df.info()
output
<class 'pandas.core.frame.DataFrame'> RangeIndex: 4248 entries, 0 to 4247 Data columns (total 9 columns):
# Column Non-Null Count Dtype
--- ------ -------------- ----- 0 order_date 4248 non-null datetime64[ns] 1 market 4248 non-null object 2 region 4248 non-null object 3 product_category 4248 non-null object 4 product 4248 non-null object 5 cost 4248 non-null int64 6 inventory 4248 non-null int64 7 net_profit 4248 non-null int64 8 sales 4248 non-null int64
dtypes: datetime64[ns](1), int64(4), object(4)
memory usage: 298.8+ KB
在pivot_table函数当中最重要的四个参数分别是index、values、columns以及aggfunc,其中每个数据透视表都必须要有一个index,例如我们想看每个地区咖啡的销售数据,就将“region”设置为index
df.pivot_table(index='region')
output
当然我们还可以更加细致一点,查看每个地区中不同咖啡种类的销售数据,因此在索引中我们引用“region”以及“product_category”两个,代码如下
df.pivot_table(index=['region', 'product_category'])
output
上面的案例当中,我们以地区“region”为索引看到了各项销售指标,当中有成本、库存、净利润以及销量这个4个指标的数据,那要是我们想要单独拎出某一个指标来看的话,代码如下所示
df.pivot_table(index=['region'], values=['sales'])
output
这也就是我们上面提到的values,在上面的案例当中我们就单独拎出了“销量”这一指标,又或者我们想要看一下净利润,代码如下
df.pivot_table(index=['region'], values=['net_profit'])
output
另外我们也提到了aggfunc,可以设置我们对数据聚合时进行的函数操作,通常情况下,默认的都是求平均数,这里我们也可以指定例如去计算总数,
df.pivot_table(index=['region'], values=['sales'], aggfunc='sum')
output
或者我们也可以这么来写
df.pivot_table(index=['region'], values=['sales'], aggfunc={ 'sales': 'sum' })
当然我们要是觉得只有一个聚合函数可能还不够,我们可以多来添加几个
df.pivot_table(index=['region'], values=['sales'], aggfunc=['sum', 'count'])
output
剩下最后的一个关键参数columns类似于之前提到的index用来设置列层次的字段,当然它并不是一个必要的参数,例如
df.pivot_table(index=['region'], values=['sales'], aggfunc='sum', columns=['product_category'])
output
在“列”方向上表示每种咖啡在每个地区的销量总和,要是我们不调用columns参数,而是统一作为index索引的话,代码如下
df.pivot_table(index=['region', 'product_category'], values=['sales'], aggfunc='sum')
output
同时我们看到当中存在着一些缺失值,我们可以选择将这些缺失值替换掉
df.pivot_table(index=['region', 'product_category'], values=['sales'], aggfunc='sum')
output
我们再来做几组练习,我们除了想要知道销量之外还想知道各个品种的咖啡在每个地区的成本如何,我们在values当中添加“cost”的字段,代码如下
df.pivot_table(index=['region'], values=['sales', 'cost'], aggfunc='sum', columns=['product_category'], fill_value=0)
output
同时我们还能够计算出总量,通过调用margin这个参数
df.pivot_table(index=['region', 'product_category'], values=['sales', 'cost'], aggfunc='sum', fill_value=0, margins=True)
output
最后的最后,我们调用pivot_table函数来制作一个2010年度咖啡销售的销量年报,代码如下
month_gp = pd.Grouper(key='order_date',freq='M')
cond = df["order_date"].dt.year == 2010 df[cond].pivot_table(index=['region','product_category'],
columns=[month_gp], values=['sales'],
aggfunc=['sum'])
output
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20