京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:俊欣
来源:关于数据分析与可视化
相信大家都用在Excel当中使用过数据透视表(一种可以对数据动态排布并且分类汇总的表格格式),也体验过它的强大功能,在Pandas模块当中被称作是pivot_table,今天小编就和大家来详细聊聊该函数的主要用途。
那我们第一步仍然是导入模块并且来读取数据,数据集是北美咖啡的销售数据,包括了咖啡的品种、销售的地区、销售的利润和成本、销量以及日期等等
import pandas as pd def load_data(): return pd.read_csv('coffee_sales.csv', parse_dates=['order_date'])
那小编这里将读取数据封装成了一个自定义的函数,读者也可以根据自己的习惯来进行数据的读取
df = load_data() df.head()
output
通过调用info()函数先来对数据集有一个大致的了解
df.info()
output
<class 'pandas.core.frame.DataFrame'> RangeIndex: 4248 entries, 0 to 4247 Data columns (total 9 columns):
# Column Non-Null Count Dtype
--- ------ -------------- ----- 0 order_date 4248 non-null datetime64[ns] 1 market 4248 non-null object 2 region 4248 non-null object 3 product_category 4248 non-null object 4 product 4248 non-null object 5 cost 4248 non-null int64 6 inventory 4248 non-null int64 7 net_profit 4248 non-null int64 8 sales 4248 non-null int64
dtypes: datetime64[ns](1), int64(4), object(4)
memory usage: 298.8+ KB
在pivot_table函数当中最重要的四个参数分别是index、values、columns以及aggfunc,其中每个数据透视表都必须要有一个index,例如我们想看每个地区咖啡的销售数据,就将“region”设置为index
df.pivot_table(index='region')
output
当然我们还可以更加细致一点,查看每个地区中不同咖啡种类的销售数据,因此在索引中我们引用“region”以及“product_category”两个,代码如下
df.pivot_table(index=['region', 'product_category'])
output
上面的案例当中,我们以地区“region”为索引看到了各项销售指标,当中有成本、库存、净利润以及销量这个4个指标的数据,那要是我们想要单独拎出某一个指标来看的话,代码如下所示
df.pivot_table(index=['region'], values=['sales'])
output
这也就是我们上面提到的values,在上面的案例当中我们就单独拎出了“销量”这一指标,又或者我们想要看一下净利润,代码如下
df.pivot_table(index=['region'], values=['net_profit'])
output
另外我们也提到了aggfunc,可以设置我们对数据聚合时进行的函数操作,通常情况下,默认的都是求平均数,这里我们也可以指定例如去计算总数,
df.pivot_table(index=['region'], values=['sales'], aggfunc='sum')
output
或者我们也可以这么来写
df.pivot_table(index=['region'], values=['sales'], aggfunc={ 'sales': 'sum' })
当然我们要是觉得只有一个聚合函数可能还不够,我们可以多来添加几个
df.pivot_table(index=['region'], values=['sales'], aggfunc=['sum', 'count'])
output
剩下最后的一个关键参数columns类似于之前提到的index用来设置列层次的字段,当然它并不是一个必要的参数,例如
df.pivot_table(index=['region'], values=['sales'], aggfunc='sum', columns=['product_category'])
output
在“列”方向上表示每种咖啡在每个地区的销量总和,要是我们不调用columns参数,而是统一作为index索引的话,代码如下
df.pivot_table(index=['region', 'product_category'], values=['sales'], aggfunc='sum')
output
同时我们看到当中存在着一些缺失值,我们可以选择将这些缺失值替换掉
df.pivot_table(index=['region', 'product_category'], values=['sales'], aggfunc='sum')
output
我们再来做几组练习,我们除了想要知道销量之外还想知道各个品种的咖啡在每个地区的成本如何,我们在values当中添加“cost”的字段,代码如下
df.pivot_table(index=['region'], values=['sales', 'cost'], aggfunc='sum', columns=['product_category'], fill_value=0)
output
同时我们还能够计算出总量,通过调用margin这个参数
df.pivot_table(index=['region', 'product_category'], values=['sales', 'cost'], aggfunc='sum', fill_value=0, margins=True)
output
最后的最后,我们调用pivot_table函数来制作一个2010年度咖啡销售的销量年报,代码如下
month_gp = pd.Grouper(key='order_date',freq='M')
cond = df["order_date"].dt.year == 2010 df[cond].pivot_table(index=['region','product_category'],
columns=[month_gp], values=['sales'],
aggfunc=['sum'])
output
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24