
作者:Python进阶者
来源:Python爬虫与数据挖掘
前几天有个粉丝【Lethe】问了一道Pyecharts可视化的问题,如下图所示。
后来原始数据和代码都给到了,需要帮忙看看。
下面是她自己的代码,如下所示:
# 可视化部分 import pandas as pd from pyecharts.charts import Map, Page from pyecharts import options as opts # 设置列对齐 pd.set_option('display.unicode.ambiguous_as_wide', True)
pd.set_option('display.unicode.east_asian_width', True) # 打开文件 df = pd.read_excel('D:python-basepython实训项目文档国内疫情统计表1.xlsx')
locations = [location for location in df['省']]
values = [value for value in df['当前确诊']]
datas1 = list(zip(locations, values))
data2 = df['省']
data2_list = list(data2) # print(data2_list) data3 = df['当前确诊']
data3_list = list(data3) # print(data3_list) data4 = df['疑似确诊']
data4_list = list(data4)
data5 = df['累计确诊']
data5_list = list(data5)
data6 = df['死亡人数']
data6_list = list(data6)
data7 = df['治愈人数']
data7_list = list(data7)
a = (
Map()
.add("当前确诊", datas1, "china")
.set_global_opts(
title_opts=opts.TitleOpts(),
visualmap_opts=opts.VisualMapOpts(max_=100),
)
)
b = (
Map()
.add("疑似确诊", [list(z) for z in zip(data2_list, data4_list)], "china")
.set_global_opts(
title_opts=opts.TitleOpts(),
visualmap_opts=opts.VisualMapOpts(max_=200),
)
)
c = (
Map()
.add("累计确诊", [list(z) for z in zip(data2_list, data5_list)], "china")
.set_global_opts(
title_opts=opts.TitleOpts(),
visualmap_opts=opts.VisualMapOpts(max_=200),
)
)
d = (
Map()
.add("死亡人数", [list(z) for z in zip(data2_list, data6_list)], "china")
.set_global_opts(
title_opts=opts.TitleOpts(),
visualmap_opts=opts.VisualMapOpts(max_=200),
)
)
e = (
Map()
.add("治愈人数", [list(z) for z in zip(data2_list, data7_list)], "china")
.set_global_opts(
title_opts=opts.TitleOpts(),
visualmap_opts=opts.VisualMapOpts(max_=200),
)
)
page = Page(layout=Page.DraggablePageLayout)
page.add(
a,
b,
c,
d,
e,
) # 先生成render.html文件 page.render() # 完成上一步之后把 page.render()这行注释掉 # 然后循行这下面 '''
Page.save_resize_html("render.html",
cfg_file="chart_config.json",
dest="my_test.html")
'''
后来【此类生物】修改了下代码,顺利解决了问题,代码如下所示。
# 可视化部分 import pandas as pd from pyecharts.charts import Map, Page from pyecharts import options as opts # 设置列对齐 pd.set_option('display.unicode.ambiguous_as_wide', True)
pd.set_option('display.unicode.east_asian_width', True) # 打开文件 df = pd.read_excel('国内疫情统计表1.xlsx')
locations = [] for location in df['省']: if "广西" in location:
location = "广西" if "新疆" in location:
location = "新疆" if "宁夏" in location:
location = "宁夏" if "西藏" in location:
location = "西藏" if "内蒙古" in location:
location = "内蒙古" else:
location = location.strip("省市")
locations.append(location)
values = [value for value in df['当前确诊']]
print(values, locations)
datas1 = list(zip(locations, values)) # data2 = locations
data2_list = list(data2)
print(data2_list)
data3 = df['当前确诊']
data3_list = list(data3) # print(data3_list) data4 = df['疑似确诊']
data4_list = list(data4)
data5 = df['累计确诊']
data5_list = list(data5)
data6 = df['死亡人数']
data6_list = list(data6)
data7 = df['治愈人数']
data7_list = list(data7) # # # a = (
Map()
.add("当前确诊", datas1, "china")
.set_global_opts(
title_opts=opts.TitleOpts(),
visualmap_opts=opts.VisualMapOpts(max_=100),
)
) # # # b = (
Map()
.add("疑似确诊", [list(z) for z in zip(data2_list, data4_list)], "china")
.set_global_opts(
title_opts=opts.TitleOpts(),
visualmap_opts=opts.VisualMapOpts(max_=200),
)
)
c = (
Map()
.add("累计确诊", [list(z) for z in zip(data2_list, data5_list)], "china")
.set_global_opts(
title_opts=opts.TitleOpts(),
visualmap_opts=opts.VisualMapOpts(max_=200),
)
)
d = (
Map()
.add("死亡人数", [list(z) for z in zip(data2_list, data6_list)], "china")
.set_global_opts(
title_opts=opts.TitleOpts(),
visualmap_opts=opts.VisualMapOpts(max_=200),
)
)
e = (
Map()
.add("治愈人数", [list(z) for z in zip(data2_list, data7_list)], "china")
.set_global_opts(
title_opts=opts.TitleOpts(),
visualmap_opts=opts.VisualMapOpts(max_=200),
)
)
page = Page(layout=Page.DraggablePageLayout)
page.add(
a,
b,
c,
d,
e,
) # 先生成render.html文件 page.render() # 完成上一步之后把 page.render()这行注释掉 # 然后循行这下面 '''
Page.save_resize_html("render.html",
cfg_file="chart_config.json",
dest="my_test.html")
'''
顺利解决问题。
其实就是数据处理的问题,关于这个之前有写过文章,惊!Pyecharts作图,发现无数据展示?,感兴趣的可以看下,看完之后就一目了然了。
如果有遇到问题,随时联系我解决,欢迎加入我的Python学习交流群。
大家好,我是Python进阶者。这篇文章主要盘点了一道Pyecharts作图的问题,文中针对该问题给出了具体的解析和代码实现,帮助粉丝顺利解决了问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09