
作者:麦叔
来源:麦叔编程
上一篇文章,我们讲解了NamedTuple。它可以让我们像使用对象一样使用元组,避免魔术数字,让代码更安全,更易于理解,也比普通对象更快。
下面是其中的例子。有兴趣的麦友可以在合集中往前翻,找到上一篇文章。
from typing import NamedTuple class Stock(NamedTuple): name: str
high: float
low: float
end: float
stock1 = Stock('苹果', 100, 80, 88)
stock2 = Stock(name='百度', high=80, low=63, end=65)
print(stock2.high)
print(stock2.low)
print(stock2.end)
但命名元组有个问题。它的数据是不能修改的,这是元组的重要特点。
那如果我的对象需要修改,怎么办呢?这就是本文的重点!
从Python3.7开始,我们可以用很简洁的语法定义只有属性的类,也就是dataclass。从表面上看,它们非常像命名元组。
下面是dataclass版本的Stock:
from dataclasses import dataclass
@dataclass class Stock: symbol: str
current: float high: float low: float
这个例子中,它的定义几乎和NamedTuple定义完全相同。
dataclass函数是一个类装饰器,使用@符号。dataclass 包含状态且可以被修改,重要的是它的功能很强大。
下面是创建Stock实例的例子:
>>> s = Stock("AAPL", 123.52, 137.98, 53.15)
一旦实例化,Stock对象可以像普通类一样使用。你可以访问和更新它的属性:
>>> s
Stock(symbol='AAPL', current=123.52, high=137.98, low=53.15) >>> s.current 123.52 >>> s.current = 122.25 >>> s
Stock(symbol='AAPL', current=122.25, high=137.98, low=53.15)
我们来看看,dataclass相比普通的类有什么优点。
下面是一个功能类似的普通类:
class StockOrdinary: def __init__(self, name: str, current: float, high: float, low: float) -> None: self.name = name self.current = current self.high = high self.low = low
s_ord = StockOrdinary("AAPL", 123.52, 137.98, 53.15)
「好处1」:dataclass只需要写一次属性名,不需要在__init__()方法的参数和方法体中重复。
「好处2」:dataclass也提供了一个比object类更加友好的字符串表达。
「好处3」:dataclass也包含相等比较运算。
下面的例子可以比较普通类和dataclass的区别:
>>> s_ord
<__main__.StockOrdinary object at 0x7fb833c63f10> >>> s_ord_2 = StockOrdinary("AAPL", 123.52, 137.98, 53.15) >>> s_ord == s_ord_2
False
普通类的默认字符串表达看起来很糟糕,而且它没有相等运算。dataclass的情况就要好多了:
>>> stock2 = Stock(symbol='AAPL', current=122.25, high=137.98, low=53.15) >>> s == stock2
True
「好处4」:你可以为属性指定默认值。
也许股票市场闭市了,你不知道今天股票的价格是什么:
@dataclass class StockDefaults: name: str current: float = 0.0 high: float = 0.0 low: float = 0.0
你可以只用股票名称来创建对象。其他的值会使用默认值:
>>> StockDefaults("GOOG") StockDefaults(name='GOOG', current=0.0, high=0.0, low=0.0)
「好处5」:你可以轻松的添加比较运算,如下所示:
@dataclass(order=True) class StockOrdered: name: str current: float = 0.0 high: float = 0.0 low: float = 0.0
你也许会问:就这么简单?
是的!给装饰器添加order=True参数,就会创建所有的比较运算方法。这使得我们可以比较对象实例,也可以排序。就像下面这样:
>>> stock_ordered1 = StockOrdered("GOOG", 1826.77, 1847.20, 1013.54) >>> stock_ordered2 = StockOrdered("GOOG") >>> stock_ordered3 = StockOrdered("GOOG", 1728.28, high=1733.18,
low=1666.33) >>> stock_ordered1 < stock_ordered2
False >>> stock_ordered1 > stock_ordered2
True >>> from pprint import pprint >>> pprint(sorted([stock_ordered1, stock_ordered2, stock_ordered3]))
[StockOrdered(name='GOOG', current=0.0, high=0.0, low=0.0),
StockOrdered(name='GOOG', current=1728.28, high=1733.18, low=1666.33),
StockOrdered(name='GOOG', current=1826.77, high=1847.2, low=1013.54)]
下次创建类的时候,试试看 @dataclass,写很少的代码就有很强大的功能。
dataclass也可以像普通类一样,添加所需要的实例方法或类方法。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25