Matplotlib是Python中广泛使用的绘图库之一。它具有丰富的图形功能,可以用于绘制各种类型的图表,包括线条图、散点图、饼图、柱状图和热度图(heatmap)等。
热度图是一种用颜色来表示数据值大小的二维图表。通常,热度图用于可视化矩阵或表格式数据,并以不同的颜色来区分不同数值的数据。在本文中,我们将介绍如何使用matplotlib制作热度图。
首先,我们需要准备一个数据集来绘制热度图。这里我们将使用numpy包生成一个随机的 $ 10 times 10 $ 的矩阵来模拟一个数据集:
import numpy as np
data = np.random.rand(10, 10)
生成的 data
矩阵如下所示:
array([[0.82028575, 0.76881294, 0.71971194, 0.30491486, 0.67111979,
0.17771597, 0.80438331, 0.27302774, 0.18129643, 0.63314806],
[0.77143625, 0.63551487, 0.56306356, 0.41241424, 0.47234638,
0.30451328, 0.65190823, 0.47868446, 0.03420709, 0.39056214],
[0.88830154, 0.0510874 , 0.04667507, 0.63655448, 0.1009649 ,
0.53011341, 0.88860116, 0.8072012 , 0.2627727 , 0.16129027],
[0.03957677, 0.88986948, 0.29828759, 0.34845264, 0.07125663,
0.85638637, 0.08063718, 0.65769739, 0.41561651, 0.82219976],
[0.01306113, 0.02081601, 0.00762399, 0.52039123, 0.36600046,
0.24940888, 0.21817512, 0.94152895, 0.14410661, 0.5584188 ],
[0.18524447, 0.86325457, 0.70310962, 0.17384236, 0.56810572,
0.05814711, 0.14610126, 0.76581545, 0.36524594, 0.0123577 ],
[0.69838845, 0.54777405, 0.51271685, 0.74905936, 0.04087629,
0.60057023, 0.27027469, 0.7392686 , 0.04315166, 0.09859514],
[0.79271592, 0.69936978, 0.17137361, 0.63954807, 0.19399017,
0.38978258, 0.3345555 , 0.33223096, 0.03575185, 0.527903 ],
[0.20489367, 0.00811152, 0.35635863, 0.67832791, 0.0613843 ,
0.70448221, 0.85365584, 0.88137019, 0.14431136, 0.59657908],
[0.28042776, 0.765406 , 0.53737002, 0.89526902, 0.61241154,
0.2861603 , 0.69044175, 0.11878924, 0.75902697, 0.28845139]])
接下来
,我们可以使用matplotlib.pyplot.imshow()
函数来绘制热度图。此函数接受一个二维数组作为输入,并将其以颜色编码的形式显示出来。
import matplotlib.pyplot as plt
plt.imshow(data)
plt.show()
执行上述代码后,会生成一个如下所示的热度图:
在热度图中,每个单元格的颜色表示该单元格对应的值大小。默认情况下,imshow()
会根据数据范围自动选择颜色映射(colormap)。
我们可以通过设置cmap
参数指定不同的颜色映射。常用的颜色映射包括'viridis'、'plasma'和'magma'等。例如,如果使用'magma'颜色映射,则可以通过以下方式进行设置:
plt.imshow(data, cmap='magma')
plt.show()
运行上述代码会生成以下热度图:
通常,在绘制热度图时,我们可能需要添加行列标签以更好地解释数据。这可以通过设置xticks
和yticks
参数来完成。我们可以在imshow()
函数之前添加以下两行代码来设置行列标签:
plt.xticks(range(10), ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j'])
plt.yticks(range(10), ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J'])
上述代码将行列标签分别设置为字母'a'到'j'和大写字母'A'到'J'。然后再次运行imshow()
函数,就可以得到带有行列标签的热度图:
最后,我们可以通过添加一个颜色刻度表来说明热度图中每种颜色代表的数据值范围。这可以通过使用colorbar()
函数来完成。
plt.colorbar()
plt.show()
上述代码使热度图显示一个颜色刻度表,其中最小值为0.0,最大值为1.0。
本文介绍了如何使用matplotlib制作热度图。我们首先准备了一个随机的 $ 10 times 10 $ 的数据集,然后使用imshow()
函数绘制了热度图,设置了行列标签和颜色映射,并添加了一个颜色刻度表以说明颜色代表的数据值范围。
热度图是一种可视化工具,可用于探索数据集中的模式和趋势,或者比较不同数据集之间的差异。使用matplotlib绘制热度图非常简单且灵活,可以根据需求自由调整样式和布局,进而提高数据可视化的效果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31