数值型数据的探索分析
数据分析过程中,往往需要对数据作基本的探索性分析,查看数据是否存在问题,如缺失值数量、是否存在明显的异常值、数据是如何分布的、数据的集中趋势和离散趋势等。
探索性分析一般包括三大部分,即数据的分布情况、数据的集中与离散趋势和数据的分布形态:
首先来看看关于数据分布情况的探索性分析。一般统计中通过5数就可以大致了解数据的分布,他们是最小值、下四分位数、中位数、上四分位数和最大值。
其次看看数据的集中趋势和离散趋势,通过集中趋势可以了解数据的中心值或代表值,通过离散趋势可以了解数据远离中心的程度。关于集中趋势,一般可使用均值、众数、中位数来衡量,离散趋势一般通过标准差、极差和四分位差来体现。
最后看看数据的分布形态,数据的分布形态无非是相比于正态分布而言,即偏度和峰度。偏度是数据分布形态呈现左偏或右偏;峰度是数据分布形态呈现尖瘦或矮胖。对于偏度和峰度需要说明的是:若偏度=0,则无偏;若偏度>0,则有偏;若偏度<0,则左偏;若峰度=0,则陡峭程度与正态分布一致;如峰度>0,则分布陡峭;若峰度<0,则分布平缓。
下面从定量和定性的角度看观察数据的探索性分析过程:
自定义函数describe_statistics,函数返回变量的观测数目、缺失值数目、最小值、下四分位数、中位数、上四分位数、最大值、均值、众数、标准差、极差、四分位差、偏度和峰度。这里的自定义函数返回结果类似于SAS的输出结果形态:
```{r}
describe_statistics <- function(x){
options(digits = 3)
require(timeDate);
N = length(x);
Nmiss = sum(is.na(x));
Min = min(x, na.rm = TRUE);
Q1 = quantile(x, probs = 0.25, na.rm = TRUE);
Median = median(x, na.rm = TRUE);
Q3 = quantile(x, probs = 0.75, na.rm = TRUE);
Max = max(x, na.rm = TRUE);
Mean = mean(x, na.rm = TRUE);
Mode = as.numeric(names(table(x)))[which.max(table(x))];
Sd = sd(x, na.rm = TRUE);
Range = abs(diff(range(x)));
QRange = IQR(x, na.rm = TRUE);
Skewness = skewness(x, na.rm = TRUE);
Kurtosis = kurtosis(x, na.rm = TRUE);
#返回函数结果
return(data.frame(N = N, Nmiss = Nmiss, Min = Min, Q1 = Q1, Median = Median, Q3 = Q3, Max = Max, Mean = Mean, Mode = Mode, Sd = Sd, Range = Range, QRange = QRange, Skewness = Skewness, Kurtosis = Kurtosis))
}
```
下面我们就用这个自定义函数来测试一下,通过上面的这些统计量值来探索数据分布、集中趋势、离散趋势和分布形态。由于本文讲解的是数值型数据的探索分析,故需要将数据框中的数值型数据挑选出来,仍然自定义函数,返回数据框中所有数值型数据的字段:
```{r}
Value_Variables <- function(df){
Vars <- names(df)[sapply(df,class) == 'integer' | sapply(df,class) == 'numeric']
return(Vars)
}
```
以R中自带的iris数据集测试:
```{r}
vars <- Value_Variables(iris)
res <- sapply(iris[,vars], describe_statistics)
res
```
上面的结果呈现了鸢尾花四个数值型变量的探索性分析。
以C50包中的churnTrain数据集测试:
```{r}
library(C50)
data(churn)
vars <- Value_Variables(churnTrain)
res <- sapply(churnTrain[,vars], describe_statistics)
res
```
很显然,当变量很多时,这样的返回结果让人看的很难受,如要使输出结果便读的话,可以将返回结果转置:
```{r}
t(res)
```
这会结果要比较整齐,好看。
以上是从定量的角度来探索数据的分布、集中趋势、离散趋势和分布形态,下面我们简单介绍一下定性的方法。
从定性角度,即通过可视化来进行数据的探索性分析,强烈推荐使用GGally包中的ggpairs()函数,该函数将绘制两两变量的相关系数、散点图,同时也绘制出单变量的密度分布图:
```{r}
library(GGally)
vars <- Value_Variables(iris)
ggpairs(iris[,vars])
```
上图不仅仅反映了数据的分布情况、还得出两两变量间的散点图和相关系数,可为下一步分析做铺垫。
数据的探索性分析过程中,通过定量和定性方法的搭配,可使分析者快速的了解数据的结构、分布及内在关系。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30数据分析师在现代企业中扮演着关键角色,他们的工作内容不仅丰富多样,还对企业的决策和发展起着重要的作用。正如一个经验丰富的 ...
2024-12-29数据分析师的能力要求 在当今的数据主导时代,数据分析师的角色变得尤为重要。他们不仅需要具备深厚的技术背景,还需要拥有业务 ...
2024-12-29