
数值型数据的探索分析
数据分析过程中,往往需要对数据作基本的探索性分析,查看数据是否存在问题,如缺失值数量、是否存在明显的异常值、数据是如何分布的、数据的集中趋势和离散趋势等。
探索性分析一般包括三大部分,即数据的分布情况、数据的集中与离散趋势和数据的分布形态:
首先来看看关于数据分布情况的探索性分析。一般统计中通过5数就可以大致了解数据的分布,他们是最小值、下四分位数、中位数、上四分位数和最大值。
其次看看数据的集中趋势和离散趋势,通过集中趋势可以了解数据的中心值或代表值,通过离散趋势可以了解数据远离中心的程度。关于集中趋势,一般可使用均值、众数、中位数来衡量,离散趋势一般通过标准差、极差和四分位差来体现。
最后看看数据的分布形态,数据的分布形态无非是相比于正态分布而言,即偏度和峰度。偏度是数据分布形态呈现左偏或右偏;峰度是数据分布形态呈现尖瘦或矮胖。对于偏度和峰度需要说明的是:若偏度=0,则无偏;若偏度>0,则有偏;若偏度<0,则左偏;若峰度=0,则陡峭程度与正态分布一致;如峰度>0,则分布陡峭;若峰度<0,则分布平缓。
下面从定量和定性的角度看观察数据的探索性分析过程:
自定义函数describe_statistics,函数返回变量的观测数目、缺失值数目、最小值、下四分位数、中位数、上四分位数、最大值、均值、众数、标准差、极差、四分位差、偏度和峰度。这里的自定义函数返回结果类似于SAS的输出结果形态:
```{r}
describe_statistics <- function(x){
options(digits = 3)
require(timeDate);
N = length(x);
Nmiss = sum(is.na(x));
Min = min(x, na.rm = TRUE);
Q1 = quantile(x, probs = 0.25, na.rm = TRUE);
Median = median(x, na.rm = TRUE);
Q3 = quantile(x, probs = 0.75, na.rm = TRUE);
Max = max(x, na.rm = TRUE);
Mean = mean(x, na.rm = TRUE);
Mode = as.numeric(names(table(x)))[which.max(table(x))];
Sd = sd(x, na.rm = TRUE);
Range = abs(diff(range(x)));
QRange = IQR(x, na.rm = TRUE);
Skewness = skewness(x, na.rm = TRUE);
Kurtosis = kurtosis(x, na.rm = TRUE);
#返回函数结果
return(data.frame(N = N, Nmiss = Nmiss, Min = Min, Q1 = Q1, Median = Median, Q3 = Q3, Max = Max, Mean = Mean, Mode = Mode, Sd = Sd, Range = Range, QRange = QRange, Skewness = Skewness, Kurtosis = Kurtosis))
}
```
下面我们就用这个自定义函数来测试一下,通过上面的这些统计量值来探索数据分布、集中趋势、离散趋势和分布形态。由于本文讲解的是数值型数据的探索分析,故需要将数据框中的数值型数据挑选出来,仍然自定义函数,返回数据框中所有数值型数据的字段:
```{r}
Value_Variables <- function(df){
Vars <- names(df)[sapply(df,class) == 'integer' | sapply(df,class) == 'numeric']
return(Vars)
}
```
以R中自带的iris数据集测试:
```{r}
vars <- Value_Variables(iris)
res <- sapply(iris[,vars], describe_statistics)
res
```
上面的结果呈现了鸢尾花四个数值型变量的探索性分析。
以C50包中的churnTrain数据集测试:
```{r}
library(C50)
data(churn)
vars <- Value_Variables(churnTrain)
res <- sapply(churnTrain[,vars], describe_statistics)
res
```
很显然,当变量很多时,这样的返回结果让人看的很难受,如要使输出结果便读的话,可以将返回结果转置:
```{r}
t(res)
```
这会结果要比较整齐,好看。
以上是从定量的角度来探索数据的分布、集中趋势、离散趋势和分布形态,下面我们简单介绍一下定性的方法。
从定性角度,即通过可视化来进行数据的探索性分析,强烈推荐使用GGally包中的ggpairs()函数,该函数将绘制两两变量的相关系数、散点图,同时也绘制出单变量的密度分布图:
```{r}
library(GGally)
vars <- Value_Variables(iris)
ggpairs(iris[,vars])
```
上图不仅仅反映了数据的分布情况、还得出两两变量间的散点图和相关系数,可为下一步分析做铺垫。
数据的探索性分析过程中,通过定量和定性方法的搭配,可使分析者快速的了解数据的结构、分布及内在关系。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30