
数值型数据的探索分析
数据分析过程中,往往需要对数据作基本的探索性分析,查看数据是否存在问题,如缺失值数量、是否存在明显的异常值、数据是如何分布的、数据的集中趋势和离散趋势等。
探索性分析一般包括三大部分,即数据的分布情况、数据的集中与离散趋势和数据的分布形态:
首先来看看关于数据分布情况的探索性分析。一般统计中通过5数就可以大致了解数据的分布,他们是最小值、下四分位数、中位数、上四分位数和最大值。
其次看看数据的集中趋势和离散趋势,通过集中趋势可以了解数据的中心值或代表值,通过离散趋势可以了解数据远离中心的程度。关于集中趋势,一般可使用均值、众数、中位数来衡量,离散趋势一般通过标准差、极差和四分位差来体现。
最后看看数据的分布形态,数据的分布形态无非是相比于正态分布而言,即偏度和峰度。偏度是数据分布形态呈现左偏或右偏;峰度是数据分布形态呈现尖瘦或矮胖。对于偏度和峰度需要说明的是:若偏度=0,则无偏;若偏度>0,则有偏;若偏度<0,则左偏;若峰度=0,则陡峭程度与正态分布一致;如峰度>0,则分布陡峭;若峰度<0,则分布平缓。
下面从定量和定性的角度看观察数据的探索性分析过程:
自定义函数describe_statistics,函数返回变量的观测数目、缺失值数目、最小值、下四分位数、中位数、上四分位数、最大值、均值、众数、标准差、极差、四分位差、偏度和峰度。这里的自定义函数返回结果类似于SAS的输出结果形态:
```{r}
describe_statistics <- function(x){
options(digits = 3)
require(timeDate);
N = length(x);
Nmiss = sum(is.na(x));
Min = min(x, na.rm = TRUE);
Q1 = quantile(x, probs = 0.25, na.rm = TRUE);
Median = median(x, na.rm = TRUE);
Q3 = quantile(x, probs = 0.75, na.rm = TRUE);
Max = max(x, na.rm = TRUE);
Mean = mean(x, na.rm = TRUE);
Mode = as.numeric(names(table(x)))[which.max(table(x))];
Sd = sd(x, na.rm = TRUE);
Range = abs(diff(range(x)));
QRange = IQR(x, na.rm = TRUE);
Skewness = skewness(x, na.rm = TRUE);
Kurtosis = kurtosis(x, na.rm = TRUE);
#返回函数结果
return(data.frame(N = N, Nmiss = Nmiss, Min = Min, Q1 = Q1, Median = Median, Q3 = Q3, Max = Max, Mean = Mean, Mode = Mode, Sd = Sd, Range = Range, QRange = QRange, Skewness = Skewness, Kurtosis = Kurtosis))
}
```
下面我们就用这个自定义函数来测试一下,通过上面的这些统计量值来探索数据分布、集中趋势、离散趋势和分布形态。由于本文讲解的是数值型数据的探索分析,故需要将数据框中的数值型数据挑选出来,仍然自定义函数,返回数据框中所有数值型数据的字段:
```{r}
Value_Variables <- function(df){
Vars <- names(df)[sapply(df,class) == 'integer' | sapply(df,class) == 'numeric']
return(Vars)
}
```
以R中自带的iris数据集测试:
```{r}
vars <- Value_Variables(iris)
res <- sapply(iris[,vars], describe_statistics)
res
```
上面的结果呈现了鸢尾花四个数值型变量的探索性分析。
以C50包中的churnTrain数据集测试:
```{r}
library(C50)
data(churn)
vars <- Value_Variables(churnTrain)
res <- sapply(churnTrain[,vars], describe_statistics)
res
```
很显然,当变量很多时,这样的返回结果让人看的很难受,如要使输出结果便读的话,可以将返回结果转置:
```{r}
t(res)
```
这会结果要比较整齐,好看。
以上是从定量的角度来探索数据的分布、集中趋势、离散趋势和分布形态,下面我们简单介绍一下定性的方法。
从定性角度,即通过可视化来进行数据的探索性分析,强烈推荐使用GGally包中的ggpairs()函数,该函数将绘制两两变量的相关系数、散点图,同时也绘制出单变量的密度分布图:
```{r}
library(GGally)
vars <- Value_Variables(iris)
ggpairs(iris[,vars])
```
上图不仅仅反映了数据的分布情况、还得出两两变量间的散点图和相关系数,可为下一步分析做铺垫。
数据的探索性分析过程中,通过定量和定性方法的搭配,可使分析者快速的了解数据的结构、分布及内在关系。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05