随着时间序列分析的普及,LSTM 成为了深度学习中最常用的工具之一。它以其优异的性能和对数据的自适应特征提取而闻名。然而,在实际应用中,我们通常需要通过多变量来预测未来时间序列数据。本文将介绍如何使用多变量 LSTM 模型来进行时间序列预测,并且给出一个例子来预测未来一周的气温。
首先,我们需要准备数据集。在本例中,我们将使用包含多个变量的天气数据。这些变量包括温度、湿度、风速、降雨量等。我们将选取最近一年的数据,将其前80%作为训练集,后20%作为测试集。
接下来,我们需要对数据进行归一化处理。由于不同变量之间的值域差异较大,我们需要将其进行缩放到一个相同的范围内。这里我们将使用 Scikit-Learn 库中的 MinMaxScaler
函数。
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
train_data = scaler.fit_transform(train_data)
test_data = scaler.transform(test_data)
接下来,我们需要将数据转换成适合 LSTM 模型的格式。在多变量情况下,我们需要将每个时刻的输入向量扩展到包含多个变量。这里我们将以过去 30 天的数据为输入,预测未来一周的气温。
import numpy as np
def create_dataset(X, y, time_steps=1):
Xs, ys = [], []
for i in range(len(X) - time_steps):
v = X[i:i + time_steps]
Xs.append(v)
ys.append(y[i + time_steps])
return np.array(Xs), np.array(ys)
TIME_STEPS = 30
X_train, y_train = create_dataset(train_data, train_data[:, 0], TIME_STEPS)
X_test, y_test = create_dataset(test_data, test_data[:, 0], TIME_STEPS)
接下来,我们可以构建 LSTM 模型。在本例中,我们将使用两层 LSTM 和一个全连接层。模型的输入形状应该是 (samples, time_steps, features)
。
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, LSTM
model = Sequential([
LSTM(units=64, input_shape=(X_train.shape[1], X_train.shape[2]), return_sequences=True),
LSTM(units=32, return_sequences=False),
Dense(units=1)])
在训练模型之前,我们需要定义损失函数和优化器,并编译模型。
model.compile(loss='mean_squared_error', optimizer='adam')
现在,我们可以开始训练模型。在每个 epoch 后,我们将记录训练集和测试集上的损失值,并可视化它们的变化。
history = model.fit(
X_train, y_train,
epochs=50,
batch_size=16,
validation_split=0.1,
verbose=1,
shuffle=False)
import matplotlib.pyplot as plt
plt.plot(history.history['loss'], label='train')
plt.plot(history.history['val_loss'], label='test')
plt.legend()
plt.show()
在模型训练完成后,我们可以对测试集进行预测,并将预测结果与真实值进行比较。
y_pred = model.predict(X_test)
plt.plot(y_test, label='true')
plt.plot(y_pred, label='predicted')
plt.legend()
plt.show()
最后,我们将使用训练好的模型来预测未来一周的气温。首先,我们需要获取最近 30 天的数据,然后使用模型进行预测。每次预测完之后,我们将新的预测值添加到输入序列中,用于下一次的预测。
X_last30
= test_data[-TIME_STEPS:] forecast = [] for i in range(7): y_pred_one = model.predict(X_last30.reshape(1, TIME_STEPS, -1)) forecast.append(y_pred_one[0, 0]) X_last30 = np.vstack((X_last30[1:], y_pred_one))
forecast = scaler.inverse_transform(np.array(forecast).reshape(-1, 1))
以上便是使用多变量 LSTM 进行时间序列预测的整个流程。通过训练模型,我们可以获得对未来数据的预测结果,并且不仅仅考虑了单一变量的影响,而是综合了多个变量的影响。当然,这只是一个简单的例子,实际应用中可能会涉及到更加复杂的数据和模型。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30