京公网安备 11010802034615号
经营许可证编号:京B2-20210330
决策树是一种常用的机器学习算法,它可以对数据进行分类和预测。在决策树中,特征(或属性)重要性是指每个特征对模型准确性的贡献程度。因此,了解如何计算特征重要性是非常有用的,可以帮助我们选择最相关的特征,进而提高模型的性能。
本文将介绍三种计算特征重要性的方法:基于信息增益、基于基尼不纯度和基于平均减少不纯度。这些方法都可以用来计算特征重要性,并且在实践中都取得了很好的效果。
信息增益是一种用来评估一个特征对决策树分类能力的重要性的指标。它的定义是:特征A对样本集D的信息增益(Gain(D, A))等于样本集D的经验熵(H(D))与特征A条件下的经验熵(H(D|A))之差,即:
Gain(D, A) = H(D) - H(D|A)
其中,经验熵(H(D))衡量了样本集D的不确定性,经验熵越大,样本集的不确定性就越高;特征A条件下的经验熵(H(D|A))衡量的是在特征A给定的情况下,样本集D的不确定性。如果特征A对分类任务有帮助,则H(D|A)会比H(D)小,因此信息增益越大,特征对分类能力的贡献就越大。
在计算信息增益时,我们需要先计算经验熵和条件经验熵。然后,通过计算信息增益来确定每个特征的重要性,从而选择最相关的特征。
基尼不纯度是另一种评估特征重要性的方法。它衡量的是从样本中随机选择两个样本,其类别不一致的概率。这个概率越低,说明样本的纯度越高,也就是说该特征对分类任务的贡献越大。
具体来说,假设样本集合D中第k类样本所占的比例为pk,则D的基尼指数定义为:
Gini(D) = 1 - ∑(pk)^2
对于样本集合D来说,假设使用特征A对其进行划分,得到了m个子集Di,其中第i个子集的样本数为Di,并且属于第k类的样本在Di中所占的比例为pki,则特征A的基尼指数定义为:
Gini(D, A) = ∑(Di / D) × (1 - ∑(pki)^2)
特征A的重要性可以通过计算基尼指数的减少量来确定。具体来说,我们可以计算使用特征A进行划分前后的基尼指数,然后计算两者之差,即:
ΔGini(D, A) = Gini(D) - Gini(D, A)
如果ΔGini越大,说明特征A对分类任务的贡献越大,因此特征A的重要性就越高。
平均减少不纯度(Mean Decrease Impurity,MDI)是一种计算特征重要性的方法,它对应的是决策树算法中的 CART
算法。该方法通过计算每个特征在决策树中被用作分裂标准的次数和该特征分裂所带来的平均减少不纯度,来评估特征的重要程度。
具体来说,对于某个特征A,我们可以计算它在所有节点上的分裂次数和每次分裂所带来的平均减少不纯度(Impurity Decrease,ID)。然后将每个节点的ID加权求和即可得到特征A的MDI。
CART算法使用的是基尼不纯度来评估节点的不纯度,因此其计算方法与基于基尼不纯度的特征重要性计算方法类似。
总结
本文介绍了三种常用的特征重要性计算方法:基于信息增益、基于基尼不纯度和基于平均减少不纯度。这些方法都可以用来计算特征的重要性,并且在实践中都取得了很好的效果。选择哪种方法取决于具体情况和数据集的特点。在实际应用中,我们可以结合多种方法来评估特征的重要性,以获得更全面的结果。
相信读完上文,你对算法已经有了全面认识。若想进一步探索机器学习的前沿知识,强烈推荐机器学习之半监督学习课程。
学习入口:https://edu.cda.cn/goods/show/3826?targetId=6730&preview=0
涵盖核心算法,结合多领域实战案例,还会持续更新,无论是新手入门还是高手进阶都很合适。赶紧点击链接开启学习吧!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23