
MySQL 是一种流行的关系型数据库管理系统,它支持事务。在 MySQL 中,默认的事务隔离级别是可重复读。这是因为可重复读可以提供更高的并发性和数据完整性。
事务隔离级别是指在多个事务同时访问同一个数据库时,每个事务所看到的数据的一致性程度。MySQL 支持四种事务隔离级别:读未提交(Read Uncommitted)、读已提交(Read Committed)、可重复读(Repeatable Read)和串行化(Serializable)。每个级别都有其优点和缺点,但默认的隔离级别是可重复读。
可重复读的隔离级别可以保证在同一个事务中对相同数据的多次读取结果始终相同,即使在事务执行期间有其他事务对该数据进行了修改。这意味着在可重复读级别下,一个事务可以读取到自己开启后的状态,而不会受到其他事务的影响。
MySQL 默认采用可重复读的原因在于其具有以下优点:
数据一致性 可重复读级别可以避免脏读、不可重复读和幻读等问题,确保数据的一致性和完整性。换句话说,如果两个事务同时访问同一张表,在可重复读级别下,每个事务将看到自己独立的视图,从而避免出现数据不一致的情况。
更高的并发性 可重复读级别下,多个事务可以并发执行,而不会相互影响。每个事务都可以看到它执行时的快照,保证了数据的一致性和隔离性。
兼容性 MySQL 默认为可重复读级别,这与其他主流数据库系统(如 Oracle 和 SQL Server)中使用的默认级别类似。这样做有助于降低迁移成本,并简化开发人员的工作。
在某些情况下,可重复读级别可能会导致一些问题。例如,在高并发负载下,如果一个事务长时间持有锁,则可能会阻塞其他事务而导致性能下降。此外,可重复读级别不能解决所有的并发问题,因为在某些情况下仍然可能出现死锁等问题。
因此,在实际应用中,开发人员需要根据具体业务需求选择合适的事务隔离级别。如果需要更高的并发性,请考虑使用读已提交或读未提交级别;如果需要更严格的数据一致性,请考虑使用串行化级别。
总之,MySQL 采用可重复读级别作为默认事务隔离级别是基于其数据一致性、并发性和兼容性等方面的考虑。但是,在实际应用中,开发人员需要根据具体情况进行选择,并注意隔离级别可能导致的问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10