Pandas是Python中用于数据分析和处理的常用工具,它提供了一系列方便易用的数据结构和函数。在数据分析中,我们经常需要对数据进行频率分布的计算和展示,而Pandas提供了很多方便的函数可以实现这一功能。本文将介绍如何使用Pandas来计算和展示区间频率分布。
区间频率分布是指将连续的数值型数据按照一定的区间划分,然后统计每个区间内数据出现的次数或占比情况。例如,我们有一组考试成绩数据,需要将其按照一定的分数区间划分,然后统计每个区间内的学生人数或占比情况。通过区间频率分布,我们可以更清晰地了解数据的分布情况,发现数据中的规律和异常点,从而为后续的数据分析和处理提供支持。
首先我们需要准备一组数值型数据,用于演示如何实现区间频率分布。这里我们使用numpy随机生成一组服从正态分布的数据:
import numpy as np
data = np.random.normal(loc=10, scale=3, size=1000)
上述代码生成了一组均值为10,标准差为3,大小为1000的正态分布数据。接下来我们可以使用Pandas将这组数据转换为Series对象:
import pandas as pd
s = pd.Series(data)
有了原始数据之后,我们需要将其按照一定的区间划分,并统计每个区间内数据的出现次数或占比情况。在Pandas中,我们可以使用cut函数实现对数据的区间划分,再配合value_counts函数统计每个区间内数据的出现次数。例如,将上述数据按照5个等宽区间进行划分,可以实现如下:
bins = pd.cut(s, bins=5, include_lowest=True)
counts = bins.value_counts(sort=False)
print(counts)
上述代码首先调用了cut函数将数据按照5个等宽区间进行划分,并通过参数include_lowest=True将最小值包含在第一个区间内。然后使用value_counts函数统计每个区间内数据的出现次数,sort=False表示不进行排序。
输出结果如下所示:
(4.562, 7.44] 8
(7.44, 10.303] 303
(10.303, 13.166] 537
(13.166, 16.029] 131
(16.029, 18.892] 21
dtype: int64
可以看到,上述代码将数据按照5个等宽区间划分,并统计了每个区间内数据的出现次数。例如,(7.44, 10.303]区间内有303个数据。
除了计算每个区间内数据的出现次数之外,我们还可以计算每个区间内数据的占比情况。这可以通过将value_counts函数的normalize参数设置为True来实现。例如,计算每个区间内数据的占比情况可以实现如下:
bins = pd.cut(s, bins=5, include_lowest=True)
proportions = bins.value_counts(sort=False, normalize=True)
print(proportions)
输出结果如下所示:
(4.562, 7.44] 0.008
(7.44, 10.303] 0.303
(10.303, 13.166] 0.537
(13.166, 16.029] 0.131
(16.029, 18.892] 0
.021 dtype: float64
可以看到,上述代码将数据按照5个等宽区间划分,并统计了每个区间内数据的占比情况。例如,(7.44, 10.303]区间内的数据占总数的30.3%。
# 可视化展示
除了计算区间频率分布之外,我们还需要将其进行可视化展示,以便更直观地了解数据的分布情况。在Pandas中,我们可以使用plot函数实现对区间频率分布的可视化展示。例如,将上述数据按照5个等宽区间进行划分,并绘制成直方图,可以实现如下:
```python
bins = pd.cut(s, bins=5, include_lowest=True)
counts = bins.value_counts(sort=False)
counts.plot(kind='bar', rot=0)
上述代码将数据按照5个等宽区间划分,并统计了每个区间内数据的出现次数。然后调用plot函数将结果绘制成直方图,kind='bar'表示绘制条形图,rot=0表示不对横轴标签进行旋转。
输出结果如下所示:
可以看到,上述代码将数据按照5个等宽区间划分,并将结果绘制成直方图。在直方图中,每个条形代表一个区间,条形的高度表示该区间内数据的出现次数。通过直方图,我们可以更清晰地了解数据的分布情况,例如数据是否符合正态分布等。
本文介绍了如何使用Pandas实现区间频率分布的计算和展示。具体来说,我们通过cut函数将数据按照一定的区间划分,并配合value_counts函数统计每个区间内数据的出现次数或占比情况;同时,通过plot函数将计算结果进行可视化展示,以便更直观地了解数据的分布情况。区间频率分布是数据分析中常用的基础操作之一,熟练掌握其原理和实现方法对于数据分析工作非常重要。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10推荐学习书籍 《CDA一级教材》在线电子版正式上线CDA网校,为你提供系统、实用、前沿的学习资源,助你轻松迈入数据分析的大门! ...
2025-03-07在数据驱动决策的时代,掌握多样的数据分析方法,就如同拥有了开启宝藏的多把钥匙,能帮助我们从海量数据中挖掘出关键信息,本 ...
2025-03-06在备考 CDA 考试的漫漫征途上,拥有一套契合考试大纲的优质模拟题库,其重要性不言而喻。它恰似黑夜里熠熠生辉的启明星,为每一 ...
2025-03-05“纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关重要。一套优质且契合需求的学习教材无疑是那关 ...
2025-03-04以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-04在现代商业环境中,数据分析师的角色愈发重要。数据分析师通过解读数据,帮助企业做出更明智的决策。因此,考取数据分析师证书成为了许多人提升职业竞争力的选择。本文将详细介绍考取数据分析师证书的过程,包括了解证书种类和 ...
2025-03-03在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2025-03-03数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-03-032025年刚开启,知乎上就出现了一个热帖: 2024年突然出现的经济下行,使各行各业都感觉到压力山大。有人说,大环境越来越不好了 ...
2025-03-03大数据分析师培训旨在培养学员掌握大数据分析的基础知识、技术及应用能力,以适应企业对数据分析人才的需求。根据不同的培训需求 ...
2025-03-03小伙伴们,最近被《哪吒2》刷屏了吧!这部电影不仅在国内掀起观影热潮,还在全球范围内引发了关注,成为中国电影崛起的又一里程 ...
2025-03-03以下的文章内容来源于张彦存老师的专栏,如果您想阅读专栏《Python 数据可视化 18 讲(PyEcharts、Matplotlib、Seaborn)》,点 ...
2025-02-28最近,国产AI模型DeepSeek爆火,其创始人梁文峰走进大众视野。《黑神话:悟空》制作人冯骥盛赞DeepSeek为“国运级别的科技成果” ...
2025-02-271.统计学简介 听说你已经被统计学劝退,被Python唬住……先别着急划走,看完这篇再说! 先说结论,大多数情况下的学不会都不是知 ...
2025-02-27“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩稳定, ...
2025-02-26在数据分析工作中,你可能经常遇到这样的问题: 从浏览到消费的转化率一直很低,那到底该优化哪里呢? 如果你要投放广告该怎么 ...
2025-02-25近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的,尤 ...
2025-02-25