京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Pandas是Python数据科学工具包中极其重要的库之一,它提供了许多方便的函数和结构,可以帮助我们快速、高效地处理和分析数据。在实际的数据分析任务中,Excel是一个非常普遍的数据源,并且我们通常需要将Excel中的数据转换为Pandas中的DataFrame格式。在这篇文章中,我将介绍如何使用Python中的pandas库将Excel工作表中的数据转换为DataFrame。
在开始之前,确保你已经安装了pandas库。如果你还没有安装,可以通过以下命令在终端中进行安装:
pip install pandas
接下来,我们需要导入pandas库和openpyxl库(用于读取和写入Excel文件)。在Python代码中,导入这两个库的方式如下:
import pandas as pd import openpyxl
现在,我们已经准备好将Excel工作表中的数据转换为Pandas DataFrame格式了。下面是具体的步骤:
首先,我们需要从Excel文件中读取数据。我们可以使用openpyxl库中的load_workbook()方法打开Excel文件,并使用它的active属性选择要读取的工作表。在下面的代码示例中,我们假设要读取的Excel文件名为"example.xlsx",并且要读取的工作表名为"Sheet1":
# 打开Excel文件并选择工作表 workbook = openpyxl.load_workbook('example.xlsx')
sheet = workbook['Sheet1']
接下来,我们需要将工作表中的数据读取到Python中。我们可以使用openpyxl库中的iter_rows()方法遍历Excel工作表中的每一行,并将它们存储在一个列表中。在下面的代码示例中,我们假设要读取的数据存储在从第二行开始的列A、列B和列C中:
# 遍历Excel工作表中的每一行,并将它们存储在一个列表中 data = [] for row in sheet.iter_rows(min_row=2, min_col=1, values_only=True):
data.append(row)
在上面的代码中,我们使用了min_row、min_col参数指定要读取的数据的起始位置,values_only参数指定只返回单元格的值而不包括格式等其他信息。
现在,我们已经将Excel工作表中的数据读取到了Python中,可以将其转换为Pandas DataFrame格式。我们可以使用pandas库中的DataFrame()函数创建一个新的DataFrame,并将读取的数据传递给它。在下面的代码示例中,我们假设要读取的Excel文件中有三列数据,分别为"Name"、"Age"和"Salary":
# 将数据存储在Pandas DataFrame中 df = pd.DataFrame(data, columns=['Name', 'Age', 'Salary'])
在上面的代码中,我们使用了columns参数指定要创建的DataFrame中的列名。
到此为止,我们已经成功地将Excel工作表中的数据转换为了Pandas DataFrame格式。完整的代码示例如下:
import pandas as pd import openpyxl # 打开Excel文件并选择工作表 workbook = openpyxl.load_workbook('example.xlsx')
sheet = workbook['Sheet1'] # 遍历Excel工作表中的每一行,并将它们存储在一个列表中 data = [] for row in sheet.iter_rows(min_row=2, min_col=1, values_only=True):
data.append(row) # 将数据存储在Pandas DataFrame中 df = pd.DataFrame(data, columns=['Name', 'Age', 'Salary']) # 打印DataFrame print(df)
总之,将Excel工作表中的数据转换
为Pandas DataFrame格式是一项非常有用的技能,它可以让我们在Python中轻松地进行数据分析和可视化。在处理较大的数据集时,将Excel工作表中的数据读取到Pandas DataFrame中可能需要一些时间。因此,在实际应用中,我们通常需要对代码进行优化,以提高读取速度。
下面是一些有用的技巧可以帮助你更快地将Excel工作表中的数据转换为Pandas DataFrame格式:
使用openpyxl库的load_workbook()方法打开Excel文件时,可以添加read_only=True参数来加快文件读取速度。
如果要读取的Excel文件非常大,可以使用pandas库的read_excel()函数来代替上述步骤。read_excel()函数可以直接从Excel文件中读取数据并将其转换为DataFrame格式。例如,以下代码将读取名为"example.xlsx"的Excel文件中的第一个工作表,并将其转换为DataFrame格式:
import pandas as pd
df = pd.read_excel('example.xlsx', sheet_name=0)
import pandas as pd
chunk_size = 1000 for chunk in pd.read_excel('example.xlsx', sheet_name=0, chunksize=chunk_size): # 在此处对每个块进行处理
在上面的代码中,我们使用了chunksize参数将数据分成大小为1000的块进行读取。然后,我们可以在for循环中对每个块进行处理。这种方法可以帮助我们有效地处理大型Excel文件。
总之,将Excel工作表中的数据转换为Pandas DataFrame格式是Python数据分析中非常基础和重要的一个步骤。本文介绍了如何使用Python的pandas和openpyxl库将Excel工作表中的数据读取到DataFrame中,并提供了一些优化技巧来加快读取速度。通过掌握这些技能,你将能够更轻松、更高效地处理和分析Excel数据。
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~

免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15