京公网安备 11010802034615号
经营许可证编号:京B2-20210330
为了简化操作和分析大量数据,Python提供了一个强大的数据处理库Pandas。 Pandas是Python中最受欢迎的数据处理工具之一,它提供了高效的数据结构和各种数据操作方法。
当我们需要对一列中每个数据进行切片时,可以使用Pandas的DataFrame对象的apply()方法。下面将介绍如何使用Pandas对某一列的每个数据进行切片。
首先,我们需要导入Pandas库:
import pandas as pd
接着,我们创建一个包含数据的DataFrame对象:
data = {'name': ['John', 'Mary', 'Bob', 'Alice'],
'age': [25, 30, 20, 35],
'city': ['New York', 'Paris', 'London', 'Tokyo']}
df = pd.DataFrame(data)
我们可以使用head()方法来查看前几行的数据:
print(df.head())
输出结果为:
name age city
0 John 25 New York
1 Mary 30 Paris
2 Bob 20 London
3 Alice 35 Tokyo
现在假设我们需要对年龄列中的数据进行切片,例如只保留年龄的十位数。我们可以使用apply()方法并传递一个函数来实现这个功能:
def slice_age(age):
return int(str(age)[1])
df['age'] = df['age'].apply(slice_age)
print(df)
输出结果为:
name age city
0 John 5 New York
1 Mary 0 Paris
2 Bob 0 London
3 Alice 5 Tokyo
可以看到,年龄列中的数据已被切片并只显示了十位数。
在上面的代码示例中,我们首先定义了一个名为slice_age()的函数来进行切片操作。这个函数接受一个参数age,并将它转换为字符串、切片、再转换为整数类型,并且返回结果。
然后,我们使用apply()方法来将这个函数应用于DataFrame对象的age列中的每个数据。最后,我们将修改后的数据存储回原DataFrame对象中。
总结一下,要对Pandas DataFrame对象中某一列的每个数据进行切片操作,我们可以使用apply()方法并传递一个自定义函数来实现。该函数接收列中每个数据作为参数,并返回对该数据执行切片操作后的结果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29