今天主要学习了两个统计学的基本概念:峰度和偏度,并且用R语言语言来描述。
再巩固一下几个概念:
1、正态分布:也叫高斯分布,用最浅显的话来说就是一种“中间多,两边少”的分布;反映在数据上,就是数值在所有数据中间的数量多,偏离中间的数据少;
2、偏度:偏度分布是正态分布的父集,即正态分布的偏度为0;右偏分布(正偏分布)的偏度>0,左偏分布(负偏分布)的偏度<0.如下图所示:
3、峰度:正态分布的偏度值为3;厚尾(峰度>3),瘦尾(峰度<3);主要是看概率密度函数的两侧(尾部):
九、数组与矩阵
R提供了简单的工具处理数组以及矩阵。
1)数组
维数向量是元素都非负的向量,指示数组或矩阵的维数
矩阵的维数是2维
> dim(my_num)<-c(2,5)
> my_num
[,1] [,2] [,3] [,4] [,5]
[1,] 11 34 14 21 11
[2,] 22 71 68 22 34
数组的维数是1维
> dim(my_num)<-c(10)
> my_num
[1] 11 22 34 71 14 68 21 22 11 34
一维数组
> c(x[1],x[3])
[1] 11 3388
> x
[1] 11 22 3388
二维数组
使用维数向量设置数组维数:
> dim(h)<-c(2,3)
> h
[,1] [,2] [,3]
[1,] 12 15 982
[2,] 32 67 321
数组切片操作:
> c(h[1,2],h[2,3])
[1] 15 321
> h[2,]
[1] 32 67 321
如果我们切片仅使用一个下标或一个索引向量,则会直接取适合位置的元素,不受数组维数影响
> h[c(1,2,3)]
[1] 12 32 15
> h[6]
[1] 321
> h[4]
[1] 67
2)索引矩阵
> array(10:20,dim=c(2,5))->x
> x
[,1] [,2] [,3] [,4] [,5]
[1,] 10 12 14 16 18
[2,] 11 13 15 17 19
> array(c(1:3,5:4,3:5),dim=c(2,3))->i
> i
[,1] [,2] [,3]
[1,] 1 3 4
[2,] 2 5 3
将索引向量指向的元素提取出来,形成一个向量
> x[i]
[1] 10 11 12 14 13 12
对指向的元素赋值
> x[i]<-111
> x
[,1] [,2] [,3] [,4] [,5]
[1,] 111 111 111 16 18
[2,] 111 111 15 17 19
3)array使用
Array函数的参数有3个,第一个是需要形成数组元素的数据,第二个是dim参数提示维度
> c(1:20)->h
> mya<-array(h,dim=c(4,5))
> mya
[,1] [,2] [,3] [,4] [,5]
[1,] 1 5 9 13 17
[2,] 2 6 10 14 18
[3,] 3 7 11 15 19
[4,] 4 8 12 16 20
> mydim<-c(2,10)
> mya<-array(h,dim=c(2,10))
> mya
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 1 3 5 7 9 11 13 15 17 19
[2,] 2 4 6 8 10 12 14 16 18 20
> dim(mya)
[1] 2 10
第一个参数既可以是向量也可以是单个值
> mya<-array(1,dim=c(2,10))
> mya
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 1 1 1 1 1 1 1 1 1 1
[2,] 1 1 1 1 1 1 1 1 1 1
4)数组运算
逐元素运算
> mya
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 1 3 5 7 9 11 13 15 17 19
[2,] 2 4 6 8 10 12 14 16 18 20
> myb
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 2 2 2 2 2 2 2 2 2 2
[2,] 2 2 2 2 2 2 2 2 2 2
> mya+myb
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 3 5 7 9 11 13 15 17 19 21
[2,] 4 6 8 10 12 14 16 18 20 22
> mya*myb
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 2 6 10 14 18 22 26 30 34 38
[2,] 4 8 12 16 20 24 28 32 36 40
> 3*mya*myb
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 6 18 30 42 54 66 78 90 102 114
[2,] 12 24 36 48 60 72 84 96 108 120
> mya*myb+mya
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 3 9 15 21 27 33 39 45 51 57
[2,] 6 12 18 24 30 36 42 48 54 60
2个数组的外积
定义以下向量:
列向量 u(b1,b2,b3,b4)
行向量 v(a1,a2,a3)
它们的外积%o%被定义为:
R语言学习笔记 四0
> b<-array(c(1:4))
> a<-array(c(5:6))
> b%o%a
[,1] [,2]
[1,] 5 6
[2,] 10 12
[3,] 15 18
[4,] 20 24
> b
[1] 1 2 3 4
> a
[1] 5 6
再举一个例子
> b<-array(c(1:4))
> a<-array(c(5:8))
> a*b
[1] 5 12 21 32
> b
[1] 1 2 3 4
> a
[1] 5 6 7 8
> a%o%b
[,1] [,2] [,3] [,4]
[1,] 5 10 15 20
[2,] 6 12 18 24
[3,] 7 14 21 28
[4,] 8 16 24 32
生成的数组向量则由 2个数数组向量元素所有可能乘积得到
矩阵转置
5)、使用t完成标准的矩阵转置
> array(h,dim=c(2,5))->mya
> mya
[,1] [,2] [,3] [,4] [,5]
[1,] 1 3 5 7 9
[2,] 2 4 6 8 10
> t(mya)
[,1] [,2]
[1,] 1 2
[2,] 3 4
[3,] 5 6
[4,] 7 8
[5,] 9 10
2、使用aperm函数实现矩阵转置
aperm有2个常用的参数
第一个参数是需要转置的矩阵,第二个参数perm指示新矩阵相对于第一个参数矩阵的维度的下标,比如说,将行转换为列,将列转换为行,将行列次序更换,将第一维的元素与第二维的元素互换,perm设为c(2,1),perm中是维度下标,不是矩阵下标。数据分析培训
> array(h,dim=c(2,5))->mya
> mya
[,1] [,2] [,3] [,4] [,5]
[1,] 1 3 5 7 9
[2,] 2 4 6 8 10
> aperm(mya)->myb
> myb
[,1] [,2]
[1,] 1 2
[2,] 3 4
[3,] 5 6
[4,] 7 8
[5,] 9 10
> aperm(mya,perm=c(2,1))->myb
> myb
[,1] [,2]
[1,] 1 2
[2,] 3 4
[3,] 5 6
[4,] 7 8
[5,] 9 10
如果将perm设为c(1,2)表示不交换原矩阵的维度,即不做操作
> mya
[,1] [,2] [,3] [,4] [,5]
[1,] 1 3 5 7 9
[2,] 2 4 6 8 10
> aperm(mya,perm=c(1,2))->myb
> myb
[,1] [,2] [,3] [,4] [,5]
[1,] 1 3 5 7 9
[2,] 2 4 6 8 10
我们再来看一个3维数组
> array(mya,c(2,2,5))->mya1
> mya1
, , 1
[,1] [,2]
[1,] 1 3
[2,] 2 4
, , 2
[,1] [,2]
[1,] 5 7
[2,] 6 8
, , 3
[,1] [,2]
[1,] 9 1
[2,] 10 2
, , 4
[,1] [,2]
[1,] 3 5
[2,] 4 6
, , 5
[,1] [,2]
[1,] 7 9
[2,] 8 10
> aperm(mya1,perm=c(2,1,3))->myb1
> myb1
, , 1
[,1] [,2]
[1,] 1 2
[2,] 3 4
, , 2
[,1] [,2]
[1,] 5 6
[2,] 7 8
, , 3
[,1] [,2]
[1,] 9 10
[2,] 1 2
, , 4
[,1] [,2]
[1,] 3 4
[2,] 5 6
, , 5
[,1] [,2]
[1,] 7 8
[2,] 9 10
> aperm(mya1,perm=c(1,3,2))->myb1
> myb1
, , 1
[,1] [,2] [,3] [,4] [,5]
[1,] 1 5 9 3 7
[2,] 2 6 10 4 8
, , 2
[,1] [,2] [,3] [,4] [,5]
[1,] 3 7 1 5 9
[2,] 4 8 2 6 10
矩阵的维数与行列数
> ncol(mya)
[1] 5
> nrow(mya)
[1] 2
> dim(mya)
[1] 2 5
6)矩阵乘积
若A为m×n矩阵,B为n×r矩阵,则他们的乘积AB(有时记做A· B)会是一个m×r矩阵,但前提是m与n相同时才有定义。
> a
[,1] [,2] [,3] [,4] [,5]
[1,] 1 3 5 7 9
[2,] 2 4 6 8 10
> b
[,1] [,2]
[1,] 1 6
[2,] 2 7
[3,] 3 8
[4,] 4 9
[5,] 5 10
> a %*% b
[,1] [,2]
[1,] 95 220
[2,] 110 260
7)内积
使用crossprod函数求内积。
A.向量内积
设向量A=[x1,x2,...xn],B=[y1,y2,...yn],则矢量A和B的内积表示为:A·B=x1×y1+x2×y2+……+xn×yn。
> a<-c(1:3)
> b<-c(4:6)
> crossprod(a,b)
[,1]
[1,] 32
B.矩阵内积
矩阵内积的计算方式相当于第一个参数的转置乘以第二个参数,这个乘法是矩阵乘法。
> b<-array(c(4:6),dim=c(1,3))
> a<-array(c(1:3),dim=c(1,3))
> a
[,1] [,2] [,3]
[1,] 1 2 3
> b
[,1] [,2] [,3]
[1,] 4 5 6
> crossprod(a,b)
[,1] [,2] [,3]
[1,] 4 5 6
[2,] 8 10 12
[3,] 12 15 18
> t(a) %*% b
[,1] [,2] [,3]
[1,] 4 5 6
[2,] 8 10 12
[3,] 12 15 18
C.对角矩阵
通过向量生成矩阵
> a
[1] 1 2 3 4 5 6 7 8
> diag(a)
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[1,] 1 0 0 0 0 0 0 0
[2,] 0 2 0 0 0 0 0 0
[3,] 0 0 3 0 0 0 0 0
[4,] 0 0 0 4 0 0 0 0
[5,] 0 0 0 0 5 0 0 0
[6,] 0 0 0 0 0 6 0 0
[7,] 0 0 0 0 0 0 7 0
[8,] 0 0 0 0 0 0 0 8
取矩阵的对角线元素组成向量
> a<-array(c(1:16),dim=c(4,4))
> diag(a)
[1] 1 6 11 16
> a
[,1] [,2] [,3] [,4]
[1,] 1 5 9 13
[2,] 2 6 10 14
[3,] 3 7 11 15
[4,] 4 8 12 16
数据分析咨询请扫描二维码
统计学基础 - 理解统计学的基本概念和方法是数据分析师必备的技能之一。统计学为他们提供了处理数据、进行推断和建模的基础。 数 ...
2024-11-25数据分析师在如今信息爆炸的时代扮演着至关重要的角色。他们不仅需要具备扎实的数据分析技能,还需要不断学习和适应不断发展的技 ...
2024-11-25数据分析师的工作职责涉及多个关键方面,从数据的获取到处理、分析再到可视化,旨在为企业的决策提供有力支持。让我们深入了解数 ...
2024-11-25数据分析师:洞察力量的引擎 数据分析师的兴起 数据分析师行业目前正处于快速发展阶段,市场需求持续增长,薪资水平也有所提升。 ...
2024-11-25数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-25数据分析是当今社会中不可或缺的一项技能,涵盖了广泛的工具和技术。其中,掌握各种数据处理函数对于数据分析师至关重要。本文将 ...
2024-11-25“大数据治理”是一个涵盖广泛的复杂概念,其核心在于确保大规模、多样化的数据资源能够被有效管理和利用。不仅涉及数据的采集、 ...
2024-11-25一、引言 背景介绍 随着信息技术的快速发展和互联网的普及,大数据已经成为现代社会的重要资产。大数据的兴起不仅推动了各行各业 ...
2024-11-25《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22