京公网安备 11010802034615号
经营许可证编号:京B2-20210330
MySQL中的EXPLAIN命令可用于分析SELECT查询语句的执行计划。在EXPLAIN执行结果中,最常见的指标是“rows”,它表示MySQL估算在执行该查询时扫描的行数。本文将深入探讨MySQL中EXPLAIN执行结果中的rows统计原理。
在MySQL中,使用索引或全表扫描来获取查询结果的成本不同。MySQL会根据查询语句和数据表的特性,选择最优的查询执行计划。在进行查询执行计划之前,MySQL会收集表的统计信息,并根据这些统计信息进行优化选择。
对于一个给定的SELECT查询语句,MySQL会生成一棵查询执行计划树,其中每个节点代表一个操作步骤。这些操作步骤可能包括从单个表中读取行、合并两个有序列表、连接两个表等。在这个执行计划树中,每个节点都有一个估算值,表示这个操作步骤需要处理多少行数据。
当用户执行一个SELECT查询语句时,MySQL首先解析该语句,并将其转换为一个查询执行计划树。然后,MySQL会遍历该执行计划树,根据查询执行计划树上的每个节点计算出该节点需要处理的行数。这些行数累加到最终结果中,最终得到了查询所要扫描的总行数。
在MySQL中,EXPLAIN命令使用这种估算方法来预测查询执行的成本。当用户运行EXPLAIN命令时,MySQL会计算查询语句的执行计划树,并将每个节点的估算行数作为输出结果的一部分之一。其中,最重要的估算值是“All rows”(所有行),它表示整个查询语句会扫描多少行数据。此外,还有其他估算值,如“Filtered”(过滤)和“Using index”(使用索引)等。
下面我们来看几种常见情况下,MySQL如何计算rows值:
当我们对一个数据表执行SELECT查询时,MySQL会统计该表总行数,然后返回rows值为表的总行数。这是最简单和最基本的情况。
当我们在单个表上使用WHERE条件进行过滤时,MySQL会首先根据WHERE条件过滤出匹配的记录,然后根据实际匹配的行数计算rows值。
例如,如果我们有一个名为“users”的数据表,其中包含1000行记录,我们执行以下查询:
SELECT * FROM users WHERE age > 18;
MySQL会首先扫描整张表,找到所有年龄超过18岁的用户记录,并返回这些记录的行数作为rows值。这个值通常小于表的总行数。
在多表查询时,MySQL会根据连接类型和连接条件来计算rows值。对于INNER JOIN、LEFT JOIN和RIGHT JOIN等连接类型,MySQL会根据连接条件上的过滤条件来估算返回结果的行数。
例如,如果我们有一个名为“users”的数据表和一个名为“orders”的数据表,其中“orders”表包含10000行记录,我们执行以下查询:
SELECT * FROM users INNER JOIN orders ON users.id = orders.user_id;
MySQL会首先根据连接条件找到两个表中相匹配的记录,并返回这些记录的行数作为rows值。在这种情况下,该值通常小于两个表的总行数之和。
当我们在查询语句中使用索引时,MySQL可以通过索引统计信息来估算需要扫描的行数。例如,如果我们有一个名为“users
”的数据表,并在其中创建了一个名为“idx_age”的索引,我们执行以下查询:
SELECT * FROM users WHERE age > 18;
MySQL会使用“idx_age”索引来查找符合条件的记录。它可以根据该索引中存储的统计信息来估算需要扫描的行数。
当我们在查询语句中使用聚合函数时,MySQL会根据GROUP BY子句或DISTINCT关键字来计算rows值。例如,如果我们有一个名为“users”的数据表,并执行以下查询:
SELECT COUNT(DISTINCT age) FROM users;
MySQL会根据DISTINCT关键字统计出表中不同年龄的数量,并将其返回作为rows值。
当我们在查询语句中使用子查询时,MySQL会首先计算子查询语句的rows值,然后将其作为父查询的输入。例如,如果我们有一个名为“orders”的数据表和一个名为“users”的数据表,其中“orders”表包含10000行记录,我们执行以下查询:
SELECT * FROM orders WHERE user_id IN (SELECT id FROM users WHERE age > 18);
MySQL会首先执行子查询,找到所有年龄大于18岁的用户ID,然后将这些ID与“orders”表中的user_id列进行匹配。MySQL将使用子查询的rows值来计算父查询的rows值。
总之,MySQL中EXPLAIN执行结果中的rows值是根据查询执行计划估算的结果,这些估算值基于表的统计信息、查询语句和数据表特性等多种因素。虽然rows值只是一个估算值,但它可以帮助我们优化查询语句,减少查询的执行时间。如果需要进一步了解MySQL中的查询优化,请参考MySQL官方文档。
数据库知识对于数据分析工作至关重要,其中 SQL 更是数据获取与处理的关键技能。如果你想进一步提升自己在数据分析领域的能力,学会灵活运用 SQL 进行数据挖掘与分析,那么强烈推荐你学习《SQL 数据分析极简入门》
学习入口:https://edu.cda.cn/goods/show/3412?targetId=5695&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19