京公网安备 11010802034615号
经营许可证编号:京B2-20210330
python数据分析笔记—数据加载与整理
数据加载
导入文本数据
1、导入文本格式数据(CSV)的方法:
方法一:使用pd.read_csv(),默认打开csv文件。
9、10、11行三种方式均可以导入文本格式的数据。
特殊说明:第9行使用的条件是运行文件.py需要与目标文件CSV在一个文件夹中的时候可以只写文件名。第10和11行中文件名ex1.CSV前面的部分均为文件的路径。
方法二:使用pd.read.table(),需要指定是什么样分隔符的文本文件。用sep=””来指定。
2、当文件没有标题行时
可以让pandas为其自动分配默认的列名。
也可以自己定义列名。
3、将某一列作为索引,比如使用message列做索引。通过index_col参数指定’message’。
4、要将多个列做成一个层次化索引,只需传入由列编号或列名组成的列表即可。
5、文本中缺失值处理,缺失数据要么是没有(空字符串),要么是用某个标记值表示的,默认情况下,pandas会用一组经常出现的标记值进行识别,如NA、NULL等。查找出结果以NAN显示。
6、逐块读取文本文件
如果只想读取几行(避免读取整个文件),通过nrows进行制定即可。
7、对于不是使用固定分隔符分割的表格,可以使用正则表达式来作为read_table的分隔符。
(’\s+’是正则表达式中的字符)。
JSON数据是通过HTTP请求在Web浏览器和其他应用程序之间发送数据的标注形式之一。通过json.loads即可将JSON对象转换成Python对象。(import json)
对应的json.dumps则将Python对象转换成JSON格式。
直接使用read_excel(文件名路径)进行获取,与读取CSV格式的文件类似。
主要包含两种数据库文件,一种是SQL关系型数据库数据,另一种是非SQL型数据库数据即MongoDB数据库文件。
数据库文件是这几种里面比较难的,本人没有接触数据库文件,没有亲测,所以就不贴截图了。
1、数据库风格的合并
数据库风格的合并与SQL数据库中的连接(join)原理一样。通过调用merge函数即可进行合并。
当没有指明用哪一列进行连接时,程序将自动按重叠列的列名进行连接,上述语句就是按重叠列“key”列进行连接。也可以通过on来指定连接列进行连接。
当两个对象的列名不同时,即两个对象没有共同列时,也可以分别进行指定。
Left_on是指左侧DataFrame中用作连接的列。
right_on是指右侧DataFrame中用作连接的列。
通过上面的语句得到的结果里面只有a和b对应的数据,c和d以及与之相关的数据被消去,这是因为默认情况下,merge做的是‘inner’连接,即sql中的内连接,取得两个对象的交集。也有其他方式连接:left、right、outer。用“how”来指明。
也可以根据多个键(列)进行合并,用on传入一个由列名组成的列表即可。
2、索引上的合并
(1)普通索引的合并
Left_index表示将左侧的行索引引用做其连接键
right_index表示将右侧的行索引引用做其连接键
上面两个用于DataFrame中的连接键位于其索引中,可以使用Left_index=True或right_index=True或两个同时使用来进行键的连接。
(2)层次化索引
与数据库中用on来根据多个键合并一样。
3、轴向连接(合并)
轴向连接,默认是在轴方向进行连接,也可以通过axis=1使其进行横向连接。
(1)对于numpy对象(数组)可以用numpy中的concatenation函数进行合并。
(2)对于pandas对象(如Series和DataFrame),可以pandas中的concat函数进行合并。
·4、合并重叠数据
对于索引全部或部分重叠的两个数据集,我们可以使用numpy的where函数来进行合并,where函数相当于if—else函数。
对于重复的数据显示出相同的数据,而对于不同的数据显示a列表的数据。同时也可以使用combine_first的方法进行合并。合并原则与where函数一致,遇到相同的数据显示相同数据,遇到不同的显示a列表数据。
1、旋转数据
(1)重塑索引、分为stack(将数据的列旋转为行)和unstack(将数据的行旋转为列)。
(2)将‘长格式’旋转为‘宽格式’
2、转换数据
(1)数据替换,将某一值或多个值用新的值进行代替。(比较常用的是缺失值或异常值处理,缺失值一般都用NULL、NAN标记,可以用新的值代替缺失标记值)。方法是replace。
一对一替换:用np.nan替换-999
多对一替换:用np.nan替换-999和-1000.
多对多替换:用np.nan代替-999,0代替-1000.
也可以使用字典的形式来进行替换。
(2)离散化或面元划分,即根据某一条件将数据进行分组。
利用pd.cut()方式对一组年龄进行分组。
默认情况下,cut对分组条件的左边是开着的状态,右边是闭合状态。可以用left(right)=False来设置哪边是闭合的。
主要是指清理重复值,DataFrame中经常会出现重复行,清理数据主要是针对这些重复行进行清理。
利用drop_duplicates方法,可以返回一个移除了重复行的DataFrame.
默认情况下,此方法是对所有的列进行重复项清理操作,也可以用来指定特定的一列或多列进行。
默认情况下,上述方法保留的是第一个出现的值组合,传入take_last=true则保留最后一个。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05