京公网安备 11010802034615号
经营许可证编号:京B2-20210330
用R语言进行数据探索
这一次我们来说一下数据的探索性分析,R语言图标100X76
1) 主要分析工具
主要的图形表示方法有
1条图(barplot):用于分类数据。
2.直方图(hist)、点图(dotchart)、茎叶图(stem):用于观察数值型分布的形状。
3.箱线图(boxplot):给出数值型分布的汇总数据,适用 于不同分布的比较和拖尾、截尾分布的识别。
4.正态概率图(qqnorm):用于观察数据是否近似地服从 正态分布。
2)单变量数据分析
一 分类型数据
对于分类数据我们可以用频数表来分析,也可以用条形图和饼图来描述。
1. 分类频数表(table) 频数表可以描述一个分类变量的数值分布概况。table(x)
2. 条图(Barplot) 条图的高度可以是频数或频率,图的形状看起来是一样,但是刻度不一样。R 画条形图的命令是 barplot()。对分类数据作条 形图,需先对原始数据分组,否则作出的不是分类数据的条形图。
3.饼图用于表示各类别某种特征的构成比情况,它以图形的总面积为 100%,扇形面积的 大小表示事物内部各组成部分所占的百分比构成比。用命令 pie(),像条形图一样对原始数据作饼图前要先分组。
二 数值型数据
1. 集中趋势和离散程度 对于数值型数据,经常要分析一个分布的集中趋势和离散程度,用来描述集中趋势的主要有均值,中位数;描述离散程度的 主要有方差、标准差。求均值、中位数、方差、标准差的命令分别是 mean()、median()、var()、sd()在 R 里还提供了 fivenum()对数值数据五等分法(运算) 和 summary()求出分位数:
2.稳健的集中趋势和离散程度 用均值和方差描述集中趋势和离散程度往往基于正态分布,而如果数据是长尾或是有异常值时,这时用均值和方差就不 能正确地描述集中趋势和离散程度。还可以利用截尾均值来描述用 R 计算截尾均值,只要在 mean 函数里对 trim 参数进行设置就可以了,例如:mean(salarym,trim=0.2)
3. 茎叶图 用函数 stem()
4.对数值数据分组 在 R 里可以用 cut 函数对数值数据进行分组。并用 table()函数整理成 频数表形式:
例如: salaryg=cut(salary,breaks=c(2000,3000,4000,max(salary)))
5. 直方图直方图用于表示(描述)连续性变量的频数分布,用于考察变量的分布是否服从某种分布类型。R 里用来作(做)直方图的函数是 hist(),作频率直方图,把 probability 参数设置为 T 可以了,默认为 F。用 rug()命令把各个数据竖线描绘在 X 轴上。
6. 箱线图 函数是 boxplot( ) 可以设置垂直型和水平型,默认 是垂直型,要得到水平型箱线图,只要把参数 horizontal 设为 T。
7. 密度函数线density()
3) 双变量数据分析
一 分类数据对分类数据
1. 二维表 R 的 table()函数可以把双变量分类数据整理成二维表形式, table 命令处理双变量数据类似于处理单变量数据,只是参数(变 量)由原来的一个变成了两个。
2.计算边缘概率,用函数 prop.table( ),其句法是:prop.table(x, margin),当 margin=1 时,表示各个数据占行汇总数的比例,margin=2 表示各 个数据占列汇总数的比例,省略时,表示占总和的比例。
3 复杂(复式)条图
R 作条形图的函数是 barplot( ),不过在作条形图前需对数据进行分组。
二 分类数据对数值型数据
此处学习时对照着视频中的例题可以很好的理解
三 数值型数据对数值型数据
1 散点图 plot( )函数
2. 相关系数 相关系数用来反映两个数值变量的相关程度。求相关系 数的函数是 cor()。cor( )也可以求 spearman 等级 相关系数(秩相关系数)。
4)多变量数据分析
一 访问数据框数据
1 attach( )函数将数据框“连接(绑定)”入当前的名字空间, 从而可以直接用数据框中的变量名访问而不必用“数据框名$变量 名”这种格式。当变量较多时,通常将其存为一个文本文件
2. 以数组形式访问 数组名[行,列]
3. 以列表形式访问数据框 在列表名称后面加$符号,再写上变量名还可以用列表名[[变量名(号)]]形式访问。
二 数据框的拆分与合并
R 里拆分数据框和合并数据框分别用函数 unstack( )、 stack( )。
三 多变量数据的分析
1 多维列联表 able( )函数可生成多维表。
2 复式条形图 复式条形图多考察了一个分组因素,常用于考察比较两组研究对 象的某观察指标。作复式条形图之前应先对数值数据进行分组, 然后用 table( )函数作频数表。作复式条形图的函数是 barplot( ), R 默认的分段式复式条形图,要作并列式复式条形图,要设置参 数 beside=TRUE。
3. 并列箱线图 对于多变量数据经常要用到箱线图来分析各个变量的分布情况。函数是 boxplot( )
4. 点带图(stripchart) 箱线图经常用来比较各变量的分布情况,尤其是当每个变量都有很(较)多的观察值时,点带图也可以用来比较各变量的分 布情况,但主要用在样本观察值比较少时。R 作点带图的函数是 stripchart( ),对于双变量数据其用法是 stripchart(z~t),z 变量 在 t 变量上的分布情况,不同的是这里 z 变量刻度在 x 轴上,而 t 变量在 y 轴上。
5. 多变量散点图
(1)重叠散点图 有时出于研究的需要,需将两个或多组两个变量的散点图绘
制在同一个图中,这样可以更好比较它们之间的相关关系,这时就可以绘重叠散点图。
(2)矩阵式散点图 当欲同时考察三个或三个以上的数值变量间的相关关系时,
若一一绘制它们之间的简单散点图,十分麻烦。利用矩阵式散点 图比较合适,这样可以快速发现多个变量间主要相关性,这一点 在多元线性回归显得尤为重要。R 作矩阵式散点图的函数是 pairs()。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24