用R语言进行数据探索
这一次我们来说一下数据的探索性分析,R语言图标100X76
1) 主要分析工具
主要的图形表示方法有
1条图(barplot):用于分类数据。
2.直方图(hist)、点图(dotchart)、茎叶图(stem):用于观察数值型分布的形状。
3.箱线图(boxplot):给出数值型分布的汇总数据,适用 于不同分布的比较和拖尾、截尾分布的识别。
4.正态概率图(qqnorm):用于观察数据是否近似地服从 正态分布。
2)单变量数据分析
一 分类型数据
对于分类数据我们可以用频数表来分析,也可以用条形图和饼图来描述。
1. 分类频数表(table) 频数表可以描述一个分类变量的数值分布概况。table(x)
2. 条图(Barplot) 条图的高度可以是频数或频率,图的形状看起来是一样,但是刻度不一样。R 画条形图的命令是 barplot()。对分类数据作条 形图,需先对原始数据分组,否则作出的不是分类数据的条形图。
3.饼图用于表示各类别某种特征的构成比情况,它以图形的总面积为 100%,扇形面积的 大小表示事物内部各组成部分所占的百分比构成比。用命令 pie(),像条形图一样对原始数据作饼图前要先分组。
二 数值型数据
1. 集中趋势和离散程度 对于数值型数据,经常要分析一个分布的集中趋势和离散程度,用来描述集中趋势的主要有均值,中位数;描述离散程度的 主要有方差、标准差。求均值、中位数、方差、标准差的命令分别是 mean()、median()、var()、sd()在 R 里还提供了 fivenum()对数值数据五等分法(运算) 和 summary()求出分位数:
2.稳健的集中趋势和离散程度 用均值和方差描述集中趋势和离散程度往往基于正态分布,而如果数据是长尾或是有异常值时,这时用均值和方差就不 能正确地描述集中趋势和离散程度。还可以利用截尾均值来描述用 R 计算截尾均值,只要在 mean 函数里对 trim 参数进行设置就可以了,例如:mean(salarym,trim=0.2)
3. 茎叶图 用函数 stem()
4.对数值数据分组 在 R 里可以用 cut 函数对数值数据进行分组。并用 table()函数整理成 频数表形式:
例如: salaryg=cut(salary,breaks=c(2000,3000,4000,max(salary)))
5. 直方图直方图用于表示(描述)连续性变量的频数分布,用于考察变量的分布是否服从某种分布类型。R 里用来作(做)直方图的函数是 hist(),作频率直方图,把 probability 参数设置为 T 可以了,默认为 F。用 rug()命令把各个数据竖线描绘在 X 轴上。
6. 箱线图 函数是 boxplot( ) 可以设置垂直型和水平型,默认 是垂直型,要得到水平型箱线图,只要把参数 horizontal 设为 T。
7. 密度函数线density()
3) 双变量数据分析
一 分类数据对分类数据
1. 二维表 R 的 table()函数可以把双变量分类数据整理成二维表形式, table 命令处理双变量数据类似于处理单变量数据,只是参数(变 量)由原来的一个变成了两个。
2.计算边缘概率,用函数 prop.table( ),其句法是:prop.table(x, margin),当 margin=1 时,表示各个数据占行汇总数的比例,margin=2 表示各 个数据占列汇总数的比例,省略时,表示占总和的比例。
3 复杂(复式)条图
R 作条形图的函数是 barplot( ),不过在作条形图前需对数据进行分组。
二 分类数据对数值型数据
此处学习时对照着视频中的例题可以很好的理解
三 数值型数据对数值型数据
1 散点图 plot( )函数
2. 相关系数 相关系数用来反映两个数值变量的相关程度。求相关系 数的函数是 cor()。cor( )也可以求 spearman 等级 相关系数(秩相关系数)。
4)多变量数据分析
一 访问数据框数据
1 attach( )函数将数据框“连接(绑定)”入当前的名字空间, 从而可以直接用数据框中的变量名访问而不必用“数据框名$变量 名”这种格式。当变量较多时,通常将其存为一个文本文件
2. 以数组形式访问 数组名[行,列]
3. 以列表形式访问数据框 在列表名称后面加$符号,再写上变量名还可以用列表名[[变量名(号)]]形式访问。
二 数据框的拆分与合并
R 里拆分数据框和合并数据框分别用函数 unstack( )、 stack( )。
三 多变量数据的分析
1 多维列联表 able( )函数可生成多维表。
2 复式条形图 复式条形图多考察了一个分组因素,常用于考察比较两组研究对 象的某观察指标。作复式条形图之前应先对数值数据进行分组, 然后用 table( )函数作频数表。作复式条形图的函数是 barplot( ), R 默认的分段式复式条形图,要作并列式复式条形图,要设置参 数 beside=TRUE。
3. 并列箱线图 对于多变量数据经常要用到箱线图来分析各个变量的分布情况。函数是 boxplot( )
4. 点带图(stripchart) 箱线图经常用来比较各变量的分布情况,尤其是当每个变量都有很(较)多的观察值时,点带图也可以用来比较各变量的分 布情况,但主要用在样本观察值比较少时。R 作点带图的函数是 stripchart( ),对于双变量数据其用法是 stripchart(z~t),z 变量 在 t 变量上的分布情况,不同的是这里 z 变量刻度在 x 轴上,而 t 变量在 y 轴上。
5. 多变量散点图
(1)重叠散点图 有时出于研究的需要,需将两个或多组两个变量的散点图绘
制在同一个图中,这样可以更好比较它们之间的相关关系,这时就可以绘重叠散点图。
(2)矩阵式散点图 当欲同时考察三个或三个以上的数值变量间的相关关系时,
若一一绘制它们之间的简单散点图,十分麻烦。利用矩阵式散点 图比较合适,这样可以快速发现多个变量间主要相关性,这一点 在多元线性回归显得尤为重要。R 作矩阵式散点图的函数是 pairs()。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13