SQL,是结构语言化查询语言(Structured Query Language)的简称。SQL语言是一种数据库查询和程序设计语言,用于存取数据以及查询、更新和管理关系数据库系统;同时也是数据库脚本文件的扩展名。
sqldf程序包是R语言中实用的数据管理辅助工具,sqldf程序包中比较常用的是sqldf函数中的select 语句。
#使用SQL语句操作数据框,需要加载的程序包sqldf,tcltk,使用iris数据集以及演示
library(sqldf)
library(tcltk)
head(iris)#了解数据集由5各变量组成
#取出前几行
a1r <- head(iris,10)#一般方法
a1s <- sqldf("select * from iris limit 10")#取出数据框的前六行,关键词limit
identical(a1r, a1s)#比较两个数据框是否相同
#取出子集
a2r <- subset(iris, grepl("^se", Species))#取出物种列中以se开头的数据子集
a2s <- sqldf("select * from iris where Species like 'se%'")#取出数据的子集,关键词like
all.equal(as.data.frame(a2r), a2s)#检验数据是否有差异
#指定某变量值为两个以上时的提取
a3r <- subset(iris, Species %in% c("setosa", "virginica"))#在iris数据集中,选出量物种是setosa和virginica的行
a3s <- sqldf("select * from iris where Species in ('setosa', 'virginica')")#注意单引号和双引号
row.names(a3r) <- NULL#a3r选的是子集,因而行名还是与原数据集相同
identical(a3r, a3s)
#指定某变量范围时数据集的提取
a4r <- subset(iris, Petal.Length >= 0 & Petal.Length <= 2.0)#选取breaks在20到30之间的数据
a4s <- sqldf("select * from iris where Petal.Length between 0 and 2.0", row.names = TRUE)#使用row.names=TRUE可以不把行名重命名
iris$Petal.Length
#数据合计
a5r <- aggregate(iris[1:2], iris[5], mean)#计算出了3个物种前两个变量的平均值
a5s <- sqldf('select Species, avg("Sepal.Length") `Sepal.Length`, avg("Sepal.Width") `Sepal.Width` from iris group by Species')#关键词group by
all.equal(a5r, a5s)#查看数据是否相同
# 提取某变量breaks从小到大排序后的前3行的数据,除数据属性和列名外相同
head(warpbreaks)
a6r <- head(warpbreaks[order(warpbreaks$breaks), ], 3)
a6s <- sqldf("select * from warpbreaks order by breaks limit 3")
# attributes(a6r) <- attributes(a6s) <- NULL#去除属性
row.names(a6r) <- NULL#去除列
identical(a6r, a6s)
# 提取某变量breaks从大到小排序后的前3行的数据,除数据属性和列名外相同
a7r <- head(warpbreaks[order(warpbreaks$breaks, decreasing = TRUE), ], 3)
a7s <- sqldf("select * from warpbreaks order by breaks desc limit 3")#关键词order by,desc表示降序
row.names(a7r) <- NULL
identical(a7r, a7s)
数据分析咨询请扫描二维码
统计学基础 - 理解统计学的基本概念和方法是数据分析师必备的技能之一。统计学为他们提供了处理数据、进行推断和建模的基础。 数 ...
2024-11-25数据分析师在如今信息爆炸的时代扮演着至关重要的角色。他们不仅需要具备扎实的数据分析技能,还需要不断学习和适应不断发展的技 ...
2024-11-25数据分析师的工作职责涉及多个关键方面,从数据的获取到处理、分析再到可视化,旨在为企业的决策提供有力支持。让我们深入了解数 ...
2024-11-25数据分析师:洞察力量的引擎 数据分析师的兴起 数据分析师行业目前正处于快速发展阶段,市场需求持续增长,薪资水平也有所提升。 ...
2024-11-25数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-25数据分析是当今社会中不可或缺的一项技能,涵盖了广泛的工具和技术。其中,掌握各种数据处理函数对于数据分析师至关重要。本文将 ...
2024-11-25“大数据治理”是一个涵盖广泛的复杂概念,其核心在于确保大规模、多样化的数据资源能够被有效管理和利用。不仅涉及数据的采集、 ...
2024-11-25一、引言 背景介绍 随着信息技术的快速发展和互联网的普及,大数据已经成为现代社会的重要资产。大数据的兴起不仅推动了各行各业 ...
2024-11-25《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22