SQL,是结构语言化查询语言(Structured Query Language)的简称。SQL语言是一种数据库查询和程序设计语言,用于存取数据以及查询、更新和管理关系数据库系统;同时也是数据库脚本文件的扩展名。
sqldf程序包是R语言中实用的数据管理辅助工具,sqldf程序包中比较常用的是sqldf函数中的select 语句。
#使用SQL语句操作数据框,需要加载的程序包sqldf,tcltk,使用iris数据集以及演示
library(sqldf)
library(tcltk)
head(iris)#了解数据集由5各变量组成
#取出前几行
a1r <- head(iris,10)#一般方法
a1s <- sqldf("select * from iris limit 10")#取出数据框的前六行,关键词limit
identical(a1r, a1s)#比较两个数据框是否相同
#取出子集
a2r <- subset(iris, grepl("^se", Species))#取出物种列中以se开头的数据子集
a2s <- sqldf("select * from iris where Species like 'se%'")#取出数据的子集,关键词like
all.equal(as.data.frame(a2r), a2s)#检验数据是否有差异
#指定某变量值为两个以上时的提取
a3r <- subset(iris, Species %in% c("setosa", "virginica"))#在iris数据集中,选出量物种是setosa和virginica的行
a3s <- sqldf("select * from iris where Species in ('setosa', 'virginica')")#注意单引号和双引号
row.names(a3r) <- NULL#a3r选的是子集,因而行名还是与原数据集相同
identical(a3r, a3s)
#指定某变量范围时数据集的提取
a4r <- subset(iris, Petal.Length >= 0 & Petal.Length <= 2.0)#选取breaks在20到30之间的数据
a4s <- sqldf("select * from iris where Petal.Length between 0 and 2.0", row.names = TRUE)#使用row.names=TRUE可以不把行名重命名
iris$Petal.Length
#数据合计
a5r <- aggregate(iris[1:2], iris[5], mean)#计算出了3个物种前两个变量的平均值
a5s <- sqldf('select Species, avg("Sepal.Length") `Sepal.Length`, avg("Sepal.Width") `Sepal.Width` from iris group by Species')#关键词group by
all.equal(a5r, a5s)#查看数据是否相同
# 提取某变量breaks从小到大排序后的前3行的数据,除数据属性和列名外相同
head(warpbreaks)
a6r <- head(warpbreaks[order(warpbreaks$breaks), ], 3)
a6s <- sqldf("select * from warpbreaks order by breaks limit 3")
# attributes(a6r) <- attributes(a6s) <- NULL#去除属性
row.names(a6r) <- NULL#去除列
identical(a6r, a6s)
# 提取某变量breaks从大到小排序后的前3行的数据,除数据属性和列名外相同
a7r <- head(warpbreaks[order(warpbreaks$breaks, decreasing = TRUE), ], 3)
a7s <- sqldf("select * from warpbreaks order by breaks desc limit 3")#关键词order by,desc表示降序
row.names(a7r) <- NULL
identical(a7r, a7s)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30数据分析师在现代企业中扮演着关键角色,他们的工作内容不仅丰富多样,还对企业的决策和发展起着重要的作用。正如一个经验丰富的 ...
2024-12-29数据分析师的能力要求 在当今的数据主导时代,数据分析师的角色变得尤为重要。他们不仅需要具备深厚的技术背景,还需要拥有业务 ...
2024-12-29