
SQL,是结构语言化查询语言(Structured Query Language)的简称。SQL语言是一种数据库查询和程序设计语言,用于存取数据以及查询、更新和管理关系数据库系统;同时也是数据库脚本文件的扩展名。
sqldf程序包是R语言中实用的数据管理辅助工具,sqldf程序包中比较常用的是sqldf函数中的select 语句。
#使用SQL语句操作数据框,需要加载的程序包sqldf,tcltk,使用iris数据集以及演示
library(sqldf)
library(tcltk)
head(iris)#了解数据集由5各变量组成
#取出前几行
a1r <- head(iris,10)#一般方法
a1s <- sqldf("select * from iris limit 10")#取出数据框的前六行,关键词limit
identical(a1r, a1s)#比较两个数据框是否相同
#取出子集
a2r <- subset(iris, grepl("^se", Species))#取出物种列中以se开头的数据子集
a2s <- sqldf("select * from iris where Species like 'se%'")#取出数据的子集,关键词like
all.equal(as.data.frame(a2r), a2s)#检验数据是否有差异
#指定某变量值为两个以上时的提取
a3r <- subset(iris, Species %in% c("setosa", "virginica"))#在iris数据集中,选出量物种是setosa和virginica的行
a3s <- sqldf("select * from iris where Species in ('setosa', 'virginica')")#注意单引号和双引号
row.names(a3r) <- NULL#a3r选的是子集,因而行名还是与原数据集相同
identical(a3r, a3s)
#指定某变量范围时数据集的提取
a4r <- subset(iris, Petal.Length >= 0 & Petal.Length <= 2.0)#选取breaks在20到30之间的数据
a4s <- sqldf("select * from iris where Petal.Length between 0 and 2.0", row.names = TRUE)#使用row.names=TRUE可以不把行名重命名
iris$Petal.Length
#数据合计
a5r <- aggregate(iris[1:2], iris[5], mean)#计算出了3个物种前两个变量的平均值
a5s <- sqldf('select Species, avg("Sepal.Length") `Sepal.Length`, avg("Sepal.Width") `Sepal.Width` from iris group by Species')#关键词group by
all.equal(a5r, a5s)#查看数据是否相同
# 提取某变量breaks从小到大排序后的前3行的数据,除数据属性和列名外相同
head(warpbreaks)
a6r <- head(warpbreaks[order(warpbreaks$breaks), ], 3)
a6s <- sqldf("select * from warpbreaks order by breaks limit 3")
# attributes(a6r) <- attributes(a6s) <- NULL#去除属性
row.names(a6r) <- NULL#去除列
identical(a6r, a6s)
# 提取某变量breaks从大到小排序后的前3行的数据,除数据属性和列名外相同
a7r <- head(warpbreaks[order(warpbreaks$breaks, decreasing = TRUE), ], 3)
a7s <- sqldf("select * from warpbreaks order by breaks desc limit 3")#关键词order by,desc表示降序
row.names(a7r) <- NULL
identical(a7r, a7s)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09