
SPSS 是一种功能强大的统计分析软件,常用于数据清理、探索性数据分析、假设检验等数据处理任务。在进行假设检验时,我们通常需要判断数据是否符合正态分布,因为很多假设检验方法都要求数据服从正态分布。在 SPSS 中,可以通过多种方法来判断数据是否符合正态分布,本文将介绍如何使用 K-S 检验和 S-W 检验以及对它们的样本量要求。
正态分布(normal distribution)是概率论中最重要的概率分布之一,其形状呈钟形曲线,左右对称,平均值等于中位数等特点。许多自然现象和社会现象都服从正态分布,如身高、体重、智力分数等。
SPSS 中可以通过多种方法来判断数据是否符合正态分布,这里介绍两种常见的方法:K-S 检验和 S-W 检验。
K-S(Kolmogorov-Smirnov)检验是一种非参数检验方法,其基本思想是比较样本分布与标准正态分布或其他已知分布的差异程度。具体步骤如下:
在 SPSS 中进行 K-S 检验的具体步骤如下:
K-S 检验的优点是不需要对数据进行任何假设,但它也有一些缺点,例如对样本量和分布的偏斜程度较为敏感,且只能检验单个变量是否符合正态分布。
S-W(Shapiro-Wilk)检验也是一种常用的正态性检验方法,它基于样本数据的标准化值,具有较好的效率和精度。其基本思想是比较样本数据与标准正态分布的差异程度。具体步骤如下:
其 p 值。如果 p 值小于等于显著性水平 alpha,则拒绝原假设,认为样本数据不符合正态分布。
在 SPSS 中进行 S-W 检验的具体步骤如下:
与 K-S 检验相比,S-W 检验更加稳健,对样本量和分布的偏斜程度不敏感。但它也有一些缺点,例如对极端值比较敏感,且只能检验单个变量是否符合正态分布。
K-S 和 S-W 检验对样本量的要求略有不同。一般来说,样本量越大,判断正态性的效果越好,因此建议在进行正态性检验时尽可能增加样本量。下面是 K-S 和 S-W 检验对样本量的具体要求。
需要注意的是,虽然 K-S 和 S-W 检验对样本量的要求不同,但它们都假设样本来自一个连续分布且独立同分布,因此对于非连续型数据或存在相关性的数据,应该采用其他方法来进行正态性检验。
在 SPSS 中,可以使用 K-S 和 S-W 检验来判断数据是否符合正态分布。K-S 检验通常适用于大样本量的情况下,而 S-W 检验更加稳健,适用于样本量在 50 到 200 之间的情况。此外,需要注意的是,正态性检验只是判断数据是否符合正态分布,无法证明数据一定服从正态分布,因此在进行假设检验时仍要谨慎。
想深入学习统计学知识,为数据分析筑牢根基?那快来看看统计学极简入门课程!
学习入口:https://edu.cda.cn/goods/show/3386?targetId=5647&preview=0
课程由专业数据分析师打造,完全免费,60 天有效期且随到随学。它用独特思路讲重点,从数据种类到统计学体系,内容通俗易懂。学完它,能让你轻松入门统计学,还能提升数据分析能力。赶紧点击链接开启学习,让自己在数据领域更上一层楼!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25