简单的认识R语言和逻辑斯蒂回归
在生活中并不是所有的问题都要预测一个连续型的数值,比如药剂量,某人薪水,或者客户价值;逻辑斯蒂回归回归它主要用于只有两个结果的分类问题,它定义结果的变量只有两类的值,然后根据线性模型来预测归属类的概率;本文可能写的浅显,如果有错还望能指出来,因为只是写了普及问而已; logistic回归
假设有一个变量它一共只有两类值,现在我们需要估计出A属于这两个类别的概率,假设他的线性模型是这样的一个形式;
然而在上面的式子中Y值的分布不是固定的,因为我们都知道概率只能是0-1之间,所以我们必须要变换一下式子,让Y的值和概率一样必须是0~1的数值,一个有效的办法就是用一个连接函数也有人称之为联系函数,它大概的作用就是就是将Y变换后成为服从正态分布的变量;这样就可以对A进行估计了,这就是logtistic思想;
在logistic回归中,预测变量和概率之间的关系可以通过Logistic函数表示
然后通过一系列的logit变换后就成为下面的式子,感兴趣的可以查阅一下资料,这里就不写详细的步骤:
这里我们用R语言核心技术手册里面的一系列代码和数据来说明逻辑斯蒂回归;
首先是我们先载入相应的包和数据,这个数据是关于足球射门命中的数据,对于球员来说每次射门都是由一定的概率进球,这个概率与距离有关,离球门越近越可能进球;
library(nutshell)
data("field.goals")
这时候我们先用summary()这个函数观察一下数据的分布
粗劣解读一下数据,进球的距离最近是18码,最远是62码;
我们下列函数是创建进球与否的份二分类变量
field.goals.forlr <- transform(field.goals,good=as.factor(ifelse(play.type=="FG good","good","bad")))
这时候我们在用summary()这个函数观察一下射门数据的分布
大部分都是进球的,那么我们继续进行数据探究,让我们看看根据距离计算一下进球比例
field.goals.table <- table(field.goals.forlr$good,field.goals.forlr$yards)
field.goals.table
得到的结果如下
当然我们也可以画图出来看
plot(colnames(field.goals.table),field.goals.table["good",]/(field.goals.table["bad",]+field.goals.table["good",]))
请各位自动忽略我的没给XY命名,人比较懒
从上图的结果上看进球的百分比在随着距离发生变化
这时候我们使用glm函数建模对数据进行建模,因为在测试数据中是每一次的射门都是独立的,因此我们可以认为是贝努力实验,因此我们在GLM函数中使用family='binomial',因此我们需要执行R代码如下数据分析培训
并打印结果;
field.goals.mdl <- glm(good~yards,data=field.goals.forlr,family = "binomial")
summary(field.goals.mdl)
下面是一些结果的解读
NULL deviance 是指仅包括截距项、不包括解释变量的模型和饱和模型比较得到的偏差统计量的值
residual deviance 是指既包括截距项,又包括解释变量的模型和饱和模型比较得到的偏差统计量的值
如变量的值不止两类的情况,可以使用其他的函数multinom函数预测概率;今天我们就讲到这里
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-30