经常有同学问:数据分析师成长是否有轨迹可循?从我自身体验+服务过大量企业情况来看,数据分析师成长是有路线的,只不过不同的企业给到数据分析师的成长天花板不同,所以大家感受才差异明显。
总的来看,可以分为五个阶段
阶段1:取数阶段
SQL Boy是数据分析师们必经阶段,所谓“猛将发于行伍,宰相起于州县”,正是此理。因为真正工作中取数,并不是对着一个清洗好的大宽表写sql那么简单。
为了提高数据质量,确保取数正确,有很多很多繁琐的工作要做:了解数据口径,了解产生数据的业务系统&业务流程,了解数据库设计,设计合理的埋单需求,要检查数据质量,要了解人工填报错漏背后真实原因……繁琐、纠结、复杂,都是工作常态。
当然,SQL Boy本身也被吐槽得很厉害,人人都讨厌当“人肉取数机”。不过这不是取数本身的错,而是很多企业仅仅让数据分析停留在这个阶段,没有规划更长远的发展道路,换个公司就能解决问题。
阶段2:需求阶段
“给我一个数,下班前要,快点”——这是要求。
“我们在本月新上一个活动,需要监控效果”——这是需求。
满足业务的需求而非要求,是数据分析师获得认可,独当一面工作的重要一步。很多公司在招聘“高级数据分析师”的时候,“高级”俩字主要就看:能不能自己搞掂业务方需求。能搞掂需求,就不需要事事等着领导安排;就不需要让业务反复提数还不满意;就有机会想到业务前头,找到更多合作机会。
从要求到需求,一字之差,却意味着很多相关能力的提升。你不能埋头苦干,业务说啥就跑啥数,这样总是被业务牵着鼻子团团转。你不能等着领导一件件教,常见的销售、运营、产品、供应、生产需要看啥指标,有啥分析维度,自己的心里有数。
你得主动沟通,提出方案引导业务,把零散的需求合并成可以固定监控的报表。这样才能达成满足需求,体现工作业绩的目的。这需要在数据认知、业务认知、沟通能力上都有进步。
在一些部门关系融洽,数据和业务好的公司,这一步很容易实现。但有些公司就难了,公司缺少合作氛围,只把数据分析师当人肉取数机。如果身陷这种环境,做数据的同学一定要勇于突破,换个好一些的公司,不然,很容易长年累月生闷气,又没啥进步。
阶段3:分析阶段
注意!并非所有的业务需求,都需要分析,很多需求就是简单的“监控下数据”。但是能体现数据分析师价值的,一定是分析型的需求。通过分析问题,让领导们觉得数据分析有用,这才有进一步晋升机会。
凡是经历过从0到1建立数据部门,或者从1到10壮大数据部门的同学,都会对此深有感触。领导们在思考问题的时候,想到请数据组长过来聊一聊,想到问一下数据的建议,比什么KPI/OKR考核,都能更快促成升职加薪。
在这个阶段,经常要面临理论与实际、理想与现实的冲突,比如:
明明数据采集很少,老板们却希望“深入分析”。
明明没有科学抽样,老板们却希望“做出合理评估”。
明明有问题暴露,老板们却希望“结果呈现好一点”。
为了满足需求,经常需要分析组组长/经理们反复横跳。往往是先努力学习统计学、算法等知识,努力收集同行、同业做法,然后再对着自己公司破烂不堪的数据想办法,然后再“心领神会”地接受老板旨意,想办法满足老板们靠谱/不靠谱的需求。
很多理想主义者会倒在这一关,吐槽老板们不靠谱,吐槽上位的同事只会忽悠,觉得自己一身真才实学没地方发挥。注意!跳槽并不能解决这一阶段的问题,即使换个公司,也很难保证数据质量100%好,老板100%懂得并遵守统计学、算法的规定。这一阶段必须得自己思想先开悟才能挺过去。
阶段4:价值阶段
几乎所有公司的数据部门的领导,都面临过这种灵魂拷问:
“你分析的有什么用?”
“你的工作绩效怎么考核?”
“你对整个公司的发展贡献了啥?”
当初求数像条狗,看到报告嫌人丑,是非常真实的从业状态。作为数据分析师,想要进一步让业务认可,光靠ppt和excel输出是不够的。必须得打造几个固定的价值点,有自己的产品输出才行。
这个阶段很考验数据部门领导的项目运作能力(画饼能力)。找热点话题,引导老板们表达需求,把数据产出向“数字化转型”“数据赋能”“数据化管理”等热点上蹭,和业务部门搞好关系,多收表扬信,相互吹捧体现价值,都是基本操作。
这个阶段,“如何包装数据产品”与“如何提升客户体验”是两个关键话题。包装数据产品,可以结合不同时间段的热点话题,比如趁中台概念火,就搞CDP+MA数字化运营,比如趁着大家喊“数字化转型”,先把“战情观察室”“管理驾驶仓”等BI项目上了,比如趁数据赋能火,把移动端报表上了。用工具替代临时取数,后边写绩效才有保证。
提升客户体验,则要先清晰目标客户是谁。大老板、业务部门领导、一线是三类完全不同的群体。往往对上要多讲同业先进概念,画大饼。对业务和一线,则是找他们最关心的话题,做利益交换:数据证明业务做得好,业务证明数据产品有用。这里有很多细节操作可以讲,大家感兴趣的话,后续可以单独起一篇。
阶段5:管理阶段
经历了前四个阶段,实际上已经能在公司里混到数据部门领导了,只不过不同公司数据团队规模有差异,因此管辖权限会有区别。作为部门管理者,除了专业能力外,常规的管理方法也要有一定掌握。这个话题展开就大了,这里先不多说。
但是,并非所有的数据部门领导,都是走数据分析线升上来的。在我合作过的客户里,有一类是走业务线过来的,比如战略发展部/市场部,或者干脆是空降的。这一类领导往往在向上管理,在满足老板需求上很得心应手,但在服务其他部门,落地数据产品上较弱。
另一类则是走IT线过来的,比如做数仓、做业务系统起家的,这些人落地能力强,但向上管理,画饼能力都有待提升。也正是因此,我才有生意做,嘿嘿。
所以作为数据从业者,始终需要技术与业务并进。从取数到做项目,从做项目到做产品,从做产品到做管理的提升,不断地为公司创造价值,增强老板们体验,就能不断让自己进步,争取更多升职加薪机会。
注:此文转载自公众号“接地气的陈老师”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10推荐学习书籍 《CDA一级教材》在线电子版正式上线CDA网校,为你提供系统、实用、前沿的学习资源,助你轻松迈入数据分析的大门! ...
2025-03-07在数据驱动决策的时代,掌握多样的数据分析方法,就如同拥有了开启宝藏的多把钥匙,能帮助我们从海量数据中挖掘出关键信息,本 ...
2025-03-06