R语言画数据图形
plot是一般的画图函数,hist是直方图,boxplot是箱型图。这些函数会覆盖前面的图形,如何创建多个图形便于同时查看呢?方法有三:
1、创建新图形之前先打开一个新的图形窗口,每一幅新图形会出现在最近的图形窗口中。
dev.new() 语句1 dev.new() 语句2 ……
上面的语句,每显现一幅图形之前会新开一个窗口。
2、运用图形界面上的前进后退按钮即可。
3、可以使用dev.new,dev.next,dev.prev,dev.set等函数同时打开多个窗口,并选择将哪个输出到哪个窗口中。使用help(dev.cur)查看说明。这个貌似比较麻烦。
如果将不同的图形放在一个窗口中,可以先用par(mfrow = c(2,3))类似语句创建一个2行3列的图形集合,然后用plot一个一个画图就行了,结果见下图:
3.2一个简单的例子
3.3图形参数
可以通过图形参数自定义一幅图的多个特征(字体、颜色、坐标轴、标题、图例等)。par函数可以对图形参数进行设置,执行par()可以查看各种参数,添加参数no.readonly = TRUE,可以查看可修改的参数列表。需要说明的是,设置par之后在关闭软件前(会话结束前)一直有效。
可以先记录原始参数,然后结束一段语句之后再进行还原。比如:
opar <- par(no.readonly=TRUE) #记录初始设置 par(lty=2,pch =17) ... par(opar) #进行还原
当然可以在plot函数的后面直接设置参数。并不是所有的参数都是可以指定的,用help函数可以查看具体函数。下面介绍一些图形参数。
3.3.1符号和线条
开启截图模式:
具体的见下面截图:
上图中的21-25可以指定边框的颜色(col=)和填充的颜色(bg=).
上面是线型的设置。
3.3.2下面是颜色的设置
上面是颜色的设置说明,需要在具体的函数上进行实现和验证。col函数后面可以用编号、颜色名称、十六进制颜色值、RGB、HSV等进行设置。RGB是三原色,HSV是基于色相、饱和度、亮度来生成函数。colors可以查看所有颜色名称,嗯,657种。
可以由很多函数来生成连续的颜色,rainrow(),heat.colors(),terrain.colors()topo.colors(),cm.colors()等,gray函数可以产生多阶灰度,后面加一个0-1之间的向量。
pie函数用来画饼图,下面是一个例子:
par(mfrow = c(1,2))下面是结果:
3.3.3文本属性
图形参数可以指定字号、字体和字样。下面是相关的参数说明:
字体族是比较难以设置的。family这里的衬线、无衬线字体和等宽字体等可以设置,windo下分别映射为TT Times New Roman、TT Arial和TT Courier New。如果想用其他映射,可以用windoFonts函数进行设置。用pdf输出图形,字体设置会简单一些,用names(pdfFonts())查看可用字体,输出是只需要在pdf函数中增加参数 family = “fontname”就可以了。PostScript格式(一种用来打印的格式字体)也是类似的道理。
3.3.4图形尺寸与边界尺寸
下面写一个例子:
dose <- c(20,30,40,45,60)
dragA <- c(16,20,27,40,60)
dragB <- c(15,18,25,31,40)
opar <- par(no.readonly = TRUE)
par(pin = c(2,3))
par(lwd = 2,cex = 1.5)
par(cex.axis = .75,font.axis = 3)
plot(dose,dragA,type = "b",pch = 19,lty = 2,
col = "red")
plot(dose,dragB,type = "b",pch = 23,lty = 6,
col = "blue",bg = "green")#这里的col和bg是对pch=23的图形进行的设置,当然这里的col也对线条颜色进行了设置
par(opar)数据分析师培训
下面是结果:
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21