▌ 问1:做数据分析有前途吗?
答1:有!
▌ 问2:那为啥我感觉不到?!
答2:因为“数据分析”四个字下边,挂羊头卖狗肉的多。最经典的,就是每天导出excel表,然后做个“同比、环比”ppt的数据分析专员。名为数据分析,实则就是普通文员。
▌ 问3:对对对!我就是这种excel专员,我还有前途吗?
答3:当然有。前途就是努力学习sql取数、python、PowerBI等工具,然后熟悉下自己整理的excel字段的业务含义(一般都是销售日报、客服日报之类)。跳一下槽就好了。
▌ 问4:那么,什么样的公司有前途一点?
答4:以下3个条件,满足一个的都能考虑,满足2个更好,3个就最好了1、公司业绩处于上升期,不断扩编2、有独立的数据部门/数据小组3、有专业数仓,能自己写sql提数
因为只有小公司才瞎胡咧咧,问什么“数据分析有没有用”。在大公司,数据就是工作的水和空气,是基本条件。数据部门是基础服务部门,只要公司持续发展,就会持续招人。进一个有数据团队的公司,能保证自己稳定积累2~3年能力,以后再去一线大厂或者去其他公司自己组建团队,都有底子了。后边的路就顺了。
▌ 问5:好像要求有点高!如果条件1不满足,下降期公司能去吗?!
答5:如果是“瘦死的骆驼比马大”型下降,是可以考虑的。
比如这两年很多传统企业都发展受阻,业绩下滑。但是这些传统企业依然在努力做线上渠道,在扩充数据团队,这种情况是可以去的。一来,可以学习一些基础知识,比如传统企业的渠道管理、商品管理,比所谓“新零售互联网”要成熟很多。二来,有机会锻炼一下能力。又不是干一辈子,积累一些经验就可以再考虑换了。至于有些公司,本身就不咋地,再发展不行,就别去填坑了……
▌ 问6:如果条件2不满足,可以考虑吗,比如挂在业务部门的数据分析师?
答6:去了肯定过得没那么舒服,但不代表要拒绝。
一个典型的不好拒绝的,就是某些大厂,会把数据分析挂在算法/产品部门下边。给算法开发打下手。很多人一看“大厂”+“算法”,立马心潮澎湃就过去了。结果去了发现:策略产品经理提需求,算法负责实现,数据分析就是每天无休无止的写sql拉各种数,做个ABtest要分500多个维度拆解差异。虽然钱还是有,但是加班强度和郁闷程度都是很高的。如果是一个小厂子,待遇一般,去了搞什么客服排班、新媒体数据分析之类不入主流的工作,那就直接拒掉吧,没啥损失,去了又学不到东西又没钱。
▌ 问7:如果条件3不满足,可以考虑吗,特别是有些新团队。
答7:只要岗位在IT部门,且IT部门不是散装团队,有一定规模(20+人头),都可以考虑。毕竟事情都有个从0到1的过程的。岗位在IT团队能确保自己不落单。最怕的是IT团队是草台班子,或者这个岗位压根就是业务部门招的,又没有专门的数仓,让你自己从各种平台捞数……估计每天烦都能烦死。
更糟糕的是,骑自行车的本事,开汽车时用不上。很多散装小团队以“能学东西”为名义忽悠人,可真到面试大公司的时候才发现根本没用,专业度才是第一位的。
▌ 问8:上边没看到讲传统企业与互联网企业的区别呀?关系大吗?
答8:其实传统企业,只要不是那种领域很窄的,比如装备制造业、化工等等,都可以考虑。
一来,在商品管理、店铺管理、外呼管理、地推团队管理上,一个历史悠久的传统企业积累的经验,远远不是这两年的新冒出来的“新零售”互联网公司能比的。可以积累一定经验。二来,互联网与传统的差异,在数据上主要体现在埋点+用户行为分析上。如果传统企业也有自建的电商渠道,也有做埋点,其实差异就没那么大了。特别是,这两年互联网在退潮,大厂裁员,小厂关门情况很多,不见得对所有人都是好赛道。所以还是看具体岗位+薪资,只要岗位薪资过得去,还是可以考虑的。
▌ 问9:那做数据分析的终点是啥?
答9:能在大厂混一个数据部门组长/总监就差不多了。
注意!数据分析岗不太适合创业。传统公司创业的都是销售,手里有客户;互联网公司创业的很多是知名的产品,因为和投资人熟,对整个开发过程熟悉。数据工作本质是个手艺活。
▌ 问10:那我不想干数据了,还能干啥?
答10:如果不想废弃数据技能,业务上和数据比较近的,都是策略类工作,比如用户运营、商品管理、策略产品,这些可以在补充专业知识后转过去。技术上直接干大数据开发就好了。
▌ 最后一问:为啥上边没给标准,比如从业1年年薪百万,从业5年创业30岁身价过亿?
答:这些本身就是忽悠人的玩意,想看薪资标准自己去BOSS直聘/拉勾网搜哈。
要特别强调的是:冷暖自知。生活不是考试,没有标准答案,薪酬也不是考试成绩,没必要相互攀比。就像很多人看不上外包工作,可如果你看到一个之前月薪5K的表哥,努力成为一名1.5w月薪的sql boy之后有多喜悦,你也会有另一番评价。有些人自己学历高、经验多,就“为何不食肉糜”的抨击别人不努力,不去卷大厂,这是非常错误的。不同人起点不同,能努力找到适合自己的方向才是最重要的。
文章来源于接地气的陈老师 ,作者接地气的陈老师
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27