▌ 问1:做数据分析有前途吗?
答1:有!
▌ 问2:那为啥我感觉不到?!
答2:因为“数据分析”四个字下边,挂羊头卖狗肉的多。最经典的,就是每天导出excel表,然后做个“同比、环比”ppt的数据分析专员。名为数据分析,实则就是普通文员。
▌ 问3:对对对!我就是这种excel专员,我还有前途吗?
答3:当然有。前途就是努力学习sql取数、python、PowerBI等工具,然后熟悉下自己整理的excel字段的业务含义(一般都是销售日报、客服日报之类)。跳一下槽就好了。
▌ 问4:那么,什么样的公司有前途一点?
答4:以下3个条件,满足一个的都能考虑,满足2个更好,3个就最好了1、公司业绩处于上升期,不断扩编2、有独立的数据部门/数据小组3、有专业数仓,能自己写sql提数
因为只有小公司才瞎胡咧咧,问什么“数据分析有没有用”。在大公司,数据就是工作的水和空气,是基本条件。数据部门是基础服务部门,只要公司持续发展,就会持续招人。进一个有数据团队的公司,能保证自己稳定积累2~3年能力,以后再去一线大厂或者去其他公司自己组建团队,都有底子了。后边的路就顺了。
▌ 问5:好像要求有点高!如果条件1不满足,下降期公司能去吗?!
答5:如果是“瘦死的骆驼比马大”型下降,是可以考虑的。
比如这两年很多传统企业都发展受阻,业绩下滑。但是这些传统企业依然在努力做线上渠道,在扩充数据团队,这种情况是可以去的。一来,可以学习一些基础知识,比如传统企业的渠道管理、商品管理,比所谓“新零售互联网”要成熟很多。二来,有机会锻炼一下能力。又不是干一辈子,积累一些经验就可以再考虑换了。至于有些公司,本身就不咋地,再发展不行,就别去填坑了……
▌ 问6:如果条件2不满足,可以考虑吗,比如挂在业务部门的数据分析师?
答6:去了肯定过得没那么舒服,但不代表要拒绝。
一个典型的不好拒绝的,就是某些大厂,会把数据分析挂在算法/产品部门下边。给算法开发打下手。很多人一看“大厂”+“算法”,立马心潮澎湃就过去了。结果去了发现:策略产品经理提需求,算法负责实现,数据分析就是每天无休无止的写sql拉各种数,做个ABtest要分500多个维度拆解差异。虽然钱还是有,但是加班强度和郁闷程度都是很高的。如果是一个小厂子,待遇一般,去了搞什么客服排班、新媒体数据分析之类不入主流的工作,那就直接拒掉吧,没啥损失,去了又学不到东西又没钱。
▌ 问7:如果条件3不满足,可以考虑吗,特别是有些新团队。
答7:只要岗位在IT部门,且IT部门不是散装团队,有一定规模(20+人头),都可以考虑。毕竟事情都有个从0到1的过程的。岗位在IT团队能确保自己不落单。最怕的是IT团队是草台班子,或者这个岗位压根就是业务部门招的,又没有专门的数仓,让你自己从各种平台捞数……估计每天烦都能烦死。
更糟糕的是,骑自行车的本事,开汽车时用不上。很多散装小团队以“能学东西”为名义忽悠人,可真到面试大公司的时候才发现根本没用,专业度才是第一位的。
▌ 问8:上边没看到讲传统企业与互联网企业的区别呀?关系大吗?
答8:其实传统企业,只要不是那种领域很窄的,比如装备制造业、化工等等,都可以考虑。
一来,在商品管理、店铺管理、外呼管理、地推团队管理上,一个历史悠久的传统企业积累的经验,远远不是这两年的新冒出来的“新零售”互联网公司能比的。可以积累一定经验。二来,互联网与传统的差异,在数据上主要体现在埋点+用户行为分析上。如果传统企业也有自建的电商渠道,也有做埋点,其实差异就没那么大了。特别是,这两年互联网在退潮,大厂裁员,小厂关门情况很多,不见得对所有人都是好赛道。所以还是看具体岗位+薪资,只要岗位薪资过得去,还是可以考虑的。
▌ 问9:那做数据分析的终点是啥?
答9:能在大厂混一个数据部门组长/总监就差不多了。
注意!数据分析岗不太适合创业。传统公司创业的都是销售,手里有客户;互联网公司创业的很多是知名的产品,因为和投资人熟,对整个开发过程熟悉。数据工作本质是个手艺活。
▌ 问10:那我不想干数据了,还能干啥?
答10:如果不想废弃数据技能,业务上和数据比较近的,都是策略类工作,比如用户运营、商品管理、策略产品,这些可以在补充专业知识后转过去。技术上直接干大数据开发就好了。
▌ 最后一问:为啥上边没给标准,比如从业1年年薪百万,从业5年创业30岁身价过亿?
答:这些本身就是忽悠人的玩意,想看薪资标准自己去BOSS直聘/拉勾网搜哈。
要特别强调的是:冷暖自知。生活不是考试,没有标准答案,薪酬也不是考试成绩,没必要相互攀比。就像很多人看不上外包工作,可如果你看到一个之前月薪5K的表哥,努力成为一名1.5w月薪的sql boy之后有多喜悦,你也会有另一番评价。有些人自己学历高、经验多,就“为何不食肉糜”的抨击别人不努力,不去卷大厂,这是非常错误的。不同人起点不同,能努力找到适合自己的方向才是最重要的。
文章来源于接地气的陈老师 ,作者接地气的陈老师
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13