京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据批处理--R语言里最重要的一个函数家族:*pply
之前我们讲过循环,简单讲解了向量计算,它可以代替循环进行比较搞笑的批量计算,试想计算数据框中的总收入加上10,我们没必要进行循环计算这一列的每一个元素与10的和,只需要把这一列当成一个向量执行就可以了,这就是向量计算,但是问题来了,如果我要数据框中所有列都加上10或者求所有列的均值、中位数又或对它们调用更加复杂的函数,该怎么办?第一个想到的还是循环,但是R里面循环很慢这时*pply家族的函数就派上用场了,专门完成比向量更高层次的批量处理。
apply函数
temp <- data.frame(a = rnorm(30, mean = 0), b = rnorm(30, 2), c = rnorm(30, 4))
apply(X = temp, MARGIN = 2, FUN = mean)
apply(temp, 2, sd)
apply(temp, 1, mean)
apply(temp, 2, function(x) length(x[x > 1]))
1行生成一个数据框,它每一列的数都是从一个正态分布中抽取的样本,描述一个正态分布的样本集至少要包含三个要素:样本数、均值mean、标准差sd,函数rnorm的参数也主要包含这三个要素,主要用于随机产生一个指定特征的正态分布样本集,这里a列表示随机抽取一个包含30个样本,均值为0,标准差为1(默认是1)的向量,然后赋值给a列,b为随机抽取一个包含30个样本均值为2的正态分布向量,c同样解释;为了验证抽样效果,我们可以求每一列的均值看看和设定的是否一样,这里不需要循环,只用apply函数即可,参数X(大写)用于指定数据集,MARGIN用于指定是对行计算还是对列计算,行用1表示,列2表示,也可以同时进行行和列计算,最后一个参数FUN指定调用的函数,连起来解释将temp中的每一列丢给mean函数计算求均值,可以看到第一列的均值接近0,第二列接近2,第三列接近4,和我们设定的一样;3行对每一列求标准差,可以看到标准差都接近1,和默认的标准差一样;4行对每一行求均值;5行使用了自编函数,这里是一个匿名函数,所谓匿名函数就是没有函数名,它统计x中大于1的个数,这句整体连起来是将temp的每一列丢给匿名函数,计算每一列中大于1的数值个数,有意思的是*pply家族大多数用于自编函数,进行一些批量的特殊操作。
除了对矩阵或者数据框进行操作以外,我们有时候还会用到对list的批量操作,这就需要用到lapply或者sapply函数了,
lapply函数
temp <- list(a = rnorm(30, mean = 0), b = rnorm(10, 2), c = rnorm(20, 4))
lapply(X = temp, FUN = length)
length(temp)
myfun <- function(x) {
a <- median(x)
b <- mean(x)
return(c(a, b))
}
lapply(temp, myfun)
1行创建了一个包含3个向量元素的list;2行使用lapply函数将list的每一个元素丢给length函数,统计每一个元素的长度,返回的结果是一个和X等长的list,包含3个计数结果;4行返回temp的长度为3;5行起编了一个自编函数myfun,它计算x的中位数和均值,并将结果捆绑为向量返回;最后一行将temp应用于自编函数myfun,返回计算结果,结果是一个list,和temp等长,包含三个向量,每个向量包含两个元素,即temp中每个向量的中位数和均值。
有时候我们需要向函数传递多个参数,然后进行批量操作,如下:
lapply传递多个参数
myfun2 <- function(x, y) {
a <- median(x + y)
b <- mean(x - y)
return(list(a, b))
}
b = 3
lapply(X = temp, myfun2, y = b)
1行设计了一个自编函数myfun2,它需要用户传递两个参数:x、y;最后一行使用lapply传递多个参数,只需要在FUN后面继续赋值FUN所需的参数就可以了,比如myfun2需要y参数,我们就在后面赋值y = b,这样就可以完成传参了,表示temp中每个元素向量都要和y一起参与计算,是整体的y不是y下面的每一元素,因为temp是按元素被lapply传递,而y不是,y是整体赋值。
sapply函数
sapply(X = temp, FUN = myfun, simplify = F)
sapply(X = temp, FUN = myfun, simplify = T)
sapply函数就是lapply的一个简化版本,因为它添加了simplify参数而更名为sapply,我们看到在simplify等于F时,它返回的结果和lapply一样是个list,当simplify为T时它就将结果整理成了一个矩阵,其实这个使用do.call函数也可以将lapply的结果转化为矩阵,后面应用到很多,原因是我已经忘了sapply函数。

另外一个传递多个参数进行建模的函数为mapply,这个函数很重要,一般在模型比较的交叉检验时经常用到,比如后面章节比较随机森林的树数对模型的影响时就用到了,它的一个作用就是避免多重循环,因为它和lapply的多参数传递不同,它是将多个参数的元素一一对应传递的。
mapply函数
x <- 1:3
y <- c(4, 2, 2)
z <- c(1, 3, 4)
myfun3 <- function(x, y, z) {
m <- y + z*x
}
mapply(myfun3, x, y, z)
lapply(x, myfun3, y = y, z = z)
前三行创建了三个向量,4行创建了一个自编函数myfun3;mapply函数将x、y、z的元素一一对应的传递给myfun3,返回的变量是一个向量,包含了3个元素,因为x、y、z的元素共产生了3次一一对应的关系,看到了么,如果你将要使用一个三重循环就可以使用这这种方法避免,速度快很多,具体用例请参看舆情监控的章节;而lapply返回的结果就比较复杂了,所以它们的传参逻辑不是一回事。
除了上面讲到的函数以外,*pply家族还有很多变种,什么ddply、vapply、rapply等等,大同小异根本没必要记忆,因为上面的函数足够完成它们的工作,比如tapply函数比较像分组函数,可以使用之前的透视表函数替代他,更加方便。其实一旦你搞通了之后,就会发现很多函数都是浮云,我仅仅用到两个*pply函数lapply和mapply,其他的都被其他函数替代掉了。数据分析师培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30