> options(digits = 4) #输出结果位数
> par(mar=c(4, 4, 2, 1) + 0.1, cex=0.8) # 图形修饰
> case1 <- read.csv("clipboard", header=T, sep = "\t") #复制表中的数据,直接创建case1
> head(case1)
地区 性别 教育程度 观点 年龄 月收入 月支出
1 A 女 中 不支持 55 2299 1423
2 A 女 低 不支持 39 3378 2022
3 A 女 中 支持 33 3460 1868
4 B 男 高 支持 41 4564 1918
5 B 女 高 不支持 55 3206 1906
6 A 女 中 不支持 48 4043 2233
> summary(case1)
地区 性别 教育程度 观点 年龄 月收入 月支出
A:204 男:603 低:319 不支持:628 Min. : 6.0 Min. : 637 Min. : 797
B:401 女:597 高:303 支持 :568 1st Qu.:34.0 1st Qu.:2388 1st Qu.:1722
C:384 中:578 NA's : 4 Median :40.0 Median :2978 Median :1993
D:211 Mean :40.1 Mean :3006 Mean :1997
3rd Qu.:47.0 3rd Qu.:3624 3rd Qu.:2262
Max. :72.0 Max. :6239 Max. :3385
# 定性分析
> attach(case1) #绑定数据
> T1 <- table(地区)> T1
地区
A B C D
204 401 384 211
> barplot(T1) #绘制条形图
# 定量分析 > f <- hist(月收入) #直方图
# 定性定量分析 > boxplot(月收入~性别) #箱线图
> t.test(月收入~性别) #t检验
Welch Two Sample t-test
data: 月收入 by 性别
t = 0.51, df = 1200, p-value = 0.6
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-75.43 128.49
sample estimates:
mean in group 男 mean in group 女
3019 2993
# 接受男女的月收入无显著差异的假设(p>0.5)
# 二维列联表分析
> T2 <- table(性别, 观点)
> T2
观点
性别 不支持 支持
男 319 282
女 309 286
> barplot(T2, beside = TRUE) # 条形图
> barplot(T2, beside = F) # 条形图
# beside=T表示绘制分组条形图,beside=F表示绘制堆叠条形图
# 多维列联表分析
> T3 <- ftable(性别, 教育程度, 观点) # 创建一个紧凑的"平铺"式列联表
> T3
观点 不支持 支持
性别 教育程度
男 低 81 88
高 78 66
中 160 128
女 低 82 68
高 86 72
中 141 146
> barplot(T3, beside = TRUE, col = 3:4) #条形图
> T4 <- ftable(教育程度, 性别, 观点)
> T4
观点 不支持 支持
教育程度 性别
低 男 81 88
女 82 68
高 男 78 66
女 86 72
中 男 160 128
女 141 146
> barplot(T4, beside = TRUE, col = 3:4) #条形图
> detach(case1) #解除绑定
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30数据分析师在现代企业中扮演着关键角色,他们的工作内容不仅丰富多样,还对企业的决策和发展起着重要的作用。正如一个经验丰富的 ...
2024-12-29数据分析师的能力要求 在当今的数据主导时代,数据分析师的角色变得尤为重要。他们不仅需要具备深厚的技术背景,还需要拥有业务 ...
2024-12-29