
> options(digits = 4) #输出结果位数
> par(mar=c(4, 4, 2, 1) + 0.1, cex=0.8) # 图形修饰
> case1 <- read.csv("clipboard", header=T, sep = "\t") #复制表中的数据,直接创建case1
> head(case1)
地区 性别 教育程度 观点 年龄 月收入 月支出
1 A 女 中 不支持 55 2299 1423
2 A 女 低 不支持 39 3378 2022
3 A 女 中 支持 33 3460 1868
4 B 男 高 支持 41 4564 1918
5 B 女 高 不支持 55 3206 1906
6 A 女 中 不支持 48 4043 2233
> summary(case1)
地区 性别 教育程度 观点 年龄 月收入 月支出
A:204 男:603 低:319 不支持:628 Min. : 6.0 Min. : 637 Min. : 797
B:401 女:597 高:303 支持 :568 1st Qu.:34.0 1st Qu.:2388 1st Qu.:1722
C:384 中:578 NA's : 4 Median :40.0 Median :2978 Median :1993
D:211 Mean :40.1 Mean :3006 Mean :1997
3rd Qu.:47.0 3rd Qu.:3624 3rd Qu.:2262
Max. :72.0 Max. :6239 Max. :3385
# 定性分析
> attach(case1) #绑定数据
> T1 <- table(地区)> T1
地区
A B C D
204 401 384 211
> barplot(T1) #绘制条形图
# 定量分析 > f <- hist(月收入) #直方图
# 定性定量分析 > boxplot(月收入~性别) #箱线图
> t.test(月收入~性别) #t检验
Welch Two Sample t-test
data: 月收入 by 性别
t = 0.51, df = 1200, p-value = 0.6
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-75.43 128.49
sample estimates:
mean in group 男 mean in group 女
3019 2993
# 接受男女的月收入无显著差异的假设(p>0.5)
# 二维列联表分析
> T2 <- table(性别, 观点)
> T2
观点
性别 不支持 支持
男 319 282
女 309 286
> barplot(T2, beside = TRUE) # 条形图
> barplot(T2, beside = F) # 条形图
# beside=T表示绘制分组条形图,beside=F表示绘制堆叠条形图
# 多维列联表分析
> T3 <- ftable(性别, 教育程度, 观点) # 创建一个紧凑的"平铺"式列联表
> T3
观点 不支持 支持
性别 教育程度
男 低 81 88
高 78 66
中 160 128
女 低 82 68
高 86 72
中 141 146
> barplot(T3, beside = TRUE, col = 3:4) #条形图
> T4 <- ftable(教育程度, 性别, 观点)
> T4
观点 不支持 支持
教育程度 性别
低 男 81 88
女 82 68
高 男 78 66
女 86 72
中 男 160 128
女 141 146
> barplot(T4, beside = TRUE, col = 3:4) #条形图
> detach(case1) #解除绑定
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11