
> options(digits = 4) #输出结果位数
> par(mar=c(4, 4, 2, 1) + 0.1, cex=0.8) # 图形修饰
> case1 <- read.csv("clipboard", header=T, sep = "\t") #复制表中的数据,直接创建case1
> head(case1)
地区 性别 教育程度 观点 年龄 月收入 月支出
1 A 女 中 不支持 55 2299 1423
2 A 女 低 不支持 39 3378 2022
3 A 女 中 支持 33 3460 1868
4 B 男 高 支持 41 4564 1918
5 B 女 高 不支持 55 3206 1906
6 A 女 中 不支持 48 4043 2233
> summary(case1)
地区 性别 教育程度 观点 年龄 月收入 月支出
A:204 男:603 低:319 不支持:628 Min. : 6.0 Min. : 637 Min. : 797
B:401 女:597 高:303 支持 :568 1st Qu.:34.0 1st Qu.:2388 1st Qu.:1722
C:384 中:578 NA's : 4 Median :40.0 Median :2978 Median :1993
D:211 Mean :40.1 Mean :3006 Mean :1997
3rd Qu.:47.0 3rd Qu.:3624 3rd Qu.:2262
Max. :72.0 Max. :6239 Max. :3385
# 定性分析
> attach(case1) #绑定数据
> T1 <- table(地区)> T1
地区
A B C D
204 401 384 211
> barplot(T1) #绘制条形图
# 定量分析 > f <- hist(月收入) #直方图
# 定性定量分析 > boxplot(月收入~性别) #箱线图
> t.test(月收入~性别) #t检验
Welch Two Sample t-test
data: 月收入 by 性别
t = 0.51, df = 1200, p-value = 0.6
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-75.43 128.49
sample estimates:
mean in group 男 mean in group 女
3019 2993
# 接受男女的月收入无显著差异的假设(p>0.5)
# 二维列联表分析
> T2 <- table(性别, 观点)
> T2
观点
性别 不支持 支持
男 319 282
女 309 286
> barplot(T2, beside = TRUE) # 条形图
> barplot(T2, beside = F) # 条形图
# beside=T表示绘制分组条形图,beside=F表示绘制堆叠条形图
# 多维列联表分析
> T3 <- ftable(性别, 教育程度, 观点) # 创建一个紧凑的"平铺"式列联表
> T3
观点 不支持 支持
性别 教育程度
男 低 81 88
高 78 66
中 160 128
女 低 82 68
高 86 72
中 141 146
> barplot(T3, beside = TRUE, col = 3:4) #条形图
> T4 <- ftable(教育程度, 性别, 观点)
> T4
观点 不支持 支持
教育程度 性别
低 男 81 88
女 82 68
高 男 78 66
女 86 72
中 男 160 128
女 141 146
> barplot(T4, beside = TRUE, col = 3:4) #条形图
> detach(case1) #解除绑定
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11