热线电话:13121318867

登录
首页大数据时代数据清洗的具体流程是什么?
数据清洗的具体流程是什么?
2023-06-29
收藏

数据清洗数据处理中不可或缺的一个步骤,它可以去除数据中的错误和异常值,使得数据更加准确、可靠、适用于后续分析。下面将介绍数据清洗的具体流程。

  1. 收集数据 首先需要收集原始数据,可以通过多种方式获得,例如采集实验数据、爬取网络数据、获取公司内部数据等。

  2. 数据预览 在进行数据清洗之前,需要先对数据进行初步的观察和分析,了解数据的基本情况,包括数据类型、大小、格式、列名、行列数等。这可以帮助我们更好地理解数据,为后续的数据清洗和分析做好准备。

  3. 缺失值处理 缺失值是指数据中存在某些值没有被记录、测量或采集到,通常用NaN、NULL或NA表示。在进行数据清洗时,需要处理缺失值。处理方法包括填充缺失值、删除缺失值、插值法等。具体选择哪种方法取决于具体情况和数据类型

  4. 异常值处理 异常值是指与其他观测值明显不同的观测值,可能是由于数据录入错误、测量仪器故障或人为操作等原因引起的。在数据分析中,异常值可能会对结果产生负面影响,因此需要进行异常值处理。处理方法包括删除异常值、替换为其他值、平滑处理等。

  5. 重复值处理 重复值是指在数据集中出现了相同的记录。重复值可能是由于数据源信息提交错误或重复采集而产生的。如果数据集中存在重复值,则需要对其进行处理,以避免影响分析结果。处理方法包括删除重复记录、去除完全重复的行、合并重复的行等。

  6. 数据类型转换 在进行数据清洗过程中,有时候需要将数据类型进行转换,使之更加适用于后续的分析。例如,将字符型数据转换为数值型数据、日期格式转换为时间戳格式等。

  7. 数据标准数据标准化是指将数据按照一定规则进行归一化或缩放,以便于不同尺度、不同量级的数据可以进行比较和分析。常用的方法包括Z-score标准化、MinMax标准化、log变换等。

  8. 数据筛选和子集提取 有时候,我们只需要分析数据集的某些部分,或者要对数据进行进一步剪裁。这时候,就需要进行数据筛选和子集提取。具体方法包括根据条件进行子集提取、按列进行选择或删除等。

  9. 数据整合和变换 在进行数据清洗时,有时候需要将多个数据集进行整合和变换,以便于后续的分析。例如,将多个表格进行合并、对数据进行聚合和透视等。

  10. 数据保存 最后,当完成了数据清洗后,需要将结果保存下来,以备后续分析使用。可以将处理后的数据保存为CSV、Excel、JSON等格式。

上述是数据清洗的具体流程,不同情况下可能涉及到不同的数据清洗步骤,需要根据实际问题选择相应的方法。

数据分析咨询请扫描二维码

最新资讯
更多
客服在线
立即咨询