
使用R读取并查看数据
本篇文章介绍如何使用R语言读取并查看数据,包含一些最基础的函数使用方法和说明。后面还会陆续介绍数据清洗,匹配和提取等相关的操作。
查看函数帮助
对于新手来说,在使用R时最重要的是了解不同函数的使用方法。很多时候我们都是边用边学的状态,拿到一个函数如何快速的使用起来,最快捷的方法就是查看函数的帮助。在R中查看函数的帮助有两种方法,第一种是使用help,第二种是直接在函数前加问好(?)。R会直接显示出这个函数是使用方法,函数说明和示例。下面是查看具体的代码和帮助内容的截图。
help(read.csv)
?read.csv
除了使用帮助功能以外,还有一个重要操作是tab键,在输入函数的过程中按下tab键,R会自动给出推荐的函数名称以及参数,避免很多记忆和重复输入的工作。
准备工作
在R中进行任何操作和分析工作之前,先需要读取数据。保存在工作目录中的数据可以直接读取,非工作目录的其他位置在读取时需要指明路径。因此第一步工作是了解R的工作目录。下面是具体的代码,输入getwd函数,R返回当前的工作目录。
#查看工作目录
getwd()
[1] "C:/Users/Documents"
你也可以对R的工作目录进行更改,使用setwd函数可以更改工作目录的路径。下面是具体的代码。
#设置工作目录
setwd("C:\\Users\\ r")
设置好工作目录后,开始读取数据,并创建数据表。我们的数据在工作目录下,因此直接读取并命名为loandata。
#读取并创建数据表
loandata=data.frame(read.csv('loan_data.csv',header = 1))
数据概览
使用dim函数查看数据表的行列数,loandata包含30行,10列数据。
#查看数据行列数
dim(loandata)
[1] 30 10
查看列名称
使用names函数查看数据表的列名称,下面列出了loandata数据表所有列的列名称。
names(loandata)
内容概览
还有一种更加直观查看数据的方法,使用数据编辑器。在R中使用fix函数可以调出数据编辑器,数据编辑器类似excel的表格界面,在数据编辑器中可以对字段的名称及类型进行简单的修改。
#数据编辑器
fix(loandata)
查看数据表前10行
在处理的数据条目较多时,可以使用head函数查看数据表。默认情况下head函数显示数据表的前5行数据,我们也可以通过设置参数n的值来自定义显示的行数。下面是代码和结果截图,在代码中我们设置n=10来显示数据表的前10行。
#查看数据表前10行
head(loandata,n=10)
查看数据后10行
Tail函数与head函数功能类似,用来显示数据表的后5行数据,下面的代码中我们设置n=10来显示数据表的后10行。
#显示数据表后10行
tail(loandata,n=10)
查看数据类型
Typeof是查看不同字段数据类的函数,下面我们使用这个函数查看了代码数据表中贷款金额类型,显示为double型。
#查看贷款金额列数据类型
typeof(loandata$loan_amnt)
[1] "double"
验证数据类型
除了直接查看字段的数据类型外,还可以对数据类型进行验证。下面使用is.integer函数验证贷款金额字段是否为integer型。返回的结果为FALSE。说明这个字段不是integer型。
#验证贷款金额字段的数据类型 is.integer(loandata$loan_amnt) [1] FALSE
更改数据类型
查看或验证完数据类型后,还可以更改数据类型。下面我们使用as.integer函数将贷款金额字段由之前的double型改为integer型。
#更改贷款金额字段为integer型
loandata$loan_amnt=as.integer(loandata$loan_amnt)
再次使用typeof函数查看贷款金额列的数据类型,现在显示为integer型。
#查看贷款金额列数据类型
typeof(loandata$loan_amnt)
[1] "integer"
查看字段
使用数据表名称,$符号和列名称可以直接查看特定列中的内容,例如查看loandata表中的term字段。后面的很多操作都会使用到。
#查看贷款数据表中的期限列
loandata$term
描述统计
完成了数据表的导入,查看和修改数据类型操作后,我们可以开始对数据进行一些简单的统计和计算工作。R中的summary是描述统计函数,可以对整个数据表或某一类提供描述统计报告。
直接将表面写在summary函数中,可以得到整个数据表的描述统计报告,这里只包含数值类型的字段,非数值类型的字段无法进行描述统计。
#对数据表进行描述统计
summary(loandata)
输入数据表和字段名称可以得到特定字段的描述统计报告。下面是对代码数据表中的贷款金额进行描述统计的结果。描述统计报告中给出了贷款金额的最大值,最小值,中位数和四分位数等数据。
#对数据表进行描述统计
summary(loandata)
关键指标计算
除了描述统计外,还可以对数据表进行计算。首先是最基本的求和和计数。Sum是求和函数,在sum函数中输入制定的列就可以获得求和结果。下面是对贷款数据表中的贷款金额进行求和。
#对贷款金额字段求和
sum(loandata$loan_amnt)
[1] 233925
Length是R中的计数函数,下面代码对用户ID字段进行计数。数据表中共有30个用户ID。
#对贷款金额字段进行计数
length(loandata$member_id)
[1] 30
Unique是唯一值函数,配合计数函数length可以对唯一值进行计算。下面的代码中先对用户ID进行排重,然后进行计数。
#对用户ID字段取唯一值并进行计数
length(unique(loandata$member_id))
[1] 30
不同字段间也可以进行计算,并生成新的字段添加在数据表中。下面通过贷款利息和贷款金额字段相除获得贷款利率字段,保留两位小数添加在原贷款数据表中。
#贷款利率=贷款利息/贷款金额
loan_int=round((loandata$total_rec_int)/(loandata$loan_amnt),digits = 2)
#将贷款利率列合并到贷款数据表中,并查看前5行数据
head(cbind(loandata,loan_int))
下面的代码表示了贷款金额与贷款金额列的汇总值进行计算,获得每一笔贷款金额在总金额中的占比,并将这个贷款金额占比数据保留两位小数后添加到原数据表中。
#贷款金额占比=贷款金额/贷款金额汇总
loan_percent=round((loandata$loan_amnt)/sum(loandata$loan_amnt),digits = 2)
#将贷款金额占比合并到贷款数据表中
loandata=cbind(loandata,loan_percent)
#查看新生成的贷款数据表
head(loandata)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15