用R语言做网页爬虫和文本分析
受到这篇情感分析的文章和这篇网页爬虫指南的双重启发,我决定尝试抓取并分析 Goodreads 网站的书评数据。这个项目将会呈现一个从数据收集到机器学习建模分析的完整案例,我在中途犯下的错误也会一并呈现。本文将以5本流行的爱情故事书的评论为研究对象,我很自觉地选了同类型的书,使得评论具有可比性。这五本书也足够畅销,我们可以轻松获取上千条评论,如果你不喜欢爱情故事,你也可以选择其他类型的书做研究。
为了使这篇文章更易读,我把它分成了三个部分:
Part 1: 网页抓取
Part 2: 探索性数据分析和情感分析
Part 3: 基于机器学习的预测分析
这篇文章更新到了Part 1,后续部分会持续更新。
Part 1 网页抓取
Goodreads上的评论很容易抓取,在每条评论左侧都有一个非本文类型的排名变量。然而评论页面的切换是通过一个javascript按钮而不是html链接来实现的,处理起来有一点难度。不过好在这个问题有一个简单有效的解决方法,只要使用RSelenium包就可以了,点 这里 可以阅读该包的小品文。
起步
让我们先加载好要用的包并定义几个变量
library(data.table) # 为了rbindlist函数
library(dplyr) # 为了数据整理
library(magrittr) # 为了管道操作符 %>%
library(rvest) # 为了read_html函数
library(RSelenium) # 为了使用JavaScript进行网页抓取
url <- "https://www.goodreads.com/book/show/18619684-the-time-traveler-s-wife#other_reviews"
book.title <- "The time traveler's wife"
output.filename <- "GR_TimeTravelersWife.csv"
请注意,对每本书而言我需要改变上述变量的值并重新运行脚本。如果你觉得麻烦,可以用代码自动实现这个过程,但此处我就采取手动的做法。这么做也可以避免Goodreads'网站服务器过载。
让我们启动RSelenium服务器,利用Firefox浏览器可能会有些问题,为此我重新安装了一个比较旧的版本
startServer()
remDr <- remoteDriver(browserName = "firefox", port = 4444) # instantiate remote driver to connect to Selenium Server
remDr$open() # 打开浏览器
remDr$navigate(url)
这些指令会打开浏览器并转向你制定好的url,之后我们需要建立一个数据框,方便后续数据的操作。
global.df <- data.frame(book=character(),
reviewer = character(),
rating = character(),
review = character(),
stringsAsFactors = F)
现在万事俱备,可以开始网页抓取了。
网页抓取流程
为了提取我们需要的内容,对于每本书,我们将扫描其100页的评论。这里我去掉了循环,只扫描一页的内容,并对代码的工作原理逐行解释。
首先,我们需要定义书评在页面中的位置。使用SelectorGadget就能完成这一步骤,利用Chrome的一个拓展能帮助你识别CSS selector。只要找到了正确的CSS selector(这里是#bookReviews.stacked),将其传递给RSelenium服务器的findElements函数就可以了。
reviews <- remDr$findElements("css selector", "#bookReviews .stacked")
我们把书评的html代码先提取出来,然后再分离其中的内容。
reviews.html <- lapply(reviews, function(x){x$getElementAttribute("outerHTML")[[1]]})
reviews.list <- lapply(reviews.html, function(x){read_html(x) %>% html_text()} )
reviews.text <- unlist(reviews.list)
现在我们已经用list的格式保存了评论,然而其中依旧混杂着很多无关内容,我们需要利用正则表达式(regex)来清洗数据。
利用正则表达式清洗数据
依照我的文本分析经验,正则表达式既是天使也是魔鬼。通过它你可以用一行短短的命令就把字符串中所有的非字母元素移除,可它本身也是一门晦涩难懂的语言,使你在重读自己的代码时会倍感艰辛。所以如果你能读懂下面的代码做了些什么,我会倍感欣慰。
# 移除字母和符号外的元素
reviews.text2 <- gsub("[^A-Za-z\\-]|\\.+", " ", reviews.text)
# 移除换行符和多余的空格
reviews.clean <- gsub("\n|[ \t]+", " ", reviews.text2)
关于正则表达式,下面几个网址很有用:
http://www.regular-expressions.info/
http://stat545.com/block022_regular-expression.html
https://stat.ethz.ch/R-manual/R-devel/library/base/html/regex.html
用表格格式存储评论数据
现在我们已经得到了很干净的评论数据,然而由于html暗含的数据结构,我们会遇到这样的问题:对每一条评论,评论者的姓名和评分会存在同一个字符串里,而评论内容存在后一个字符串中。此外,预览评论系统会使得每个评论的开头在字符串中重复出现两次。我们需要对这些做做处理,再次使用正则表达式,我们将得到表格格式的数据。
我们先数数一共有多少条评论(即字符串数量的一半),然后建立一个临时数据框来存储数据。
n <- floor(length(reviews)/2)
reviews.df <- data.frame(book = character(n),
reviewer = character(n),
rating = character(n),
review = character(n),
stringsAsFactors = F)
我们遍历所有的字符串,逐评论地提取需要的内容并存在数据框里。这里我们采用for循环实现遍历,但如果是工业级应用,你应该更喜欢向量化处理。
下面的代码可能有点难懂,我先来解释下:
1. 第一部分,我先列举了可能出现在评论人姓名和评分之间的一些表达式,再结合正则表达式来确定姓名的结束位置,以此提取姓名。
2. 第二部分,我列举了可以出现在评分之后的表达式,有时这些表达式并不会出现,因此我得把这一情况也考虑进去。通过这两种方式,我们就可以提取评分了。
3. 第三部分,我把每个评论的开头移除了,我会记录50个字符重复出现的起始位置和结束位置。有时,评论可能篇幅较短还不到50字符,这里就用和第二部分相似的方法处理。
4. 最后,请注意这个循环的结构,我并没有一一循环字符串,而是遍历了评论,每个评论包含两个字符串,因此用2*j和2*j-1索引。
for(j in 1:n){
reviews.df$book[j] <- book.title
# 提取评论人姓名
auth.rat.sep <- regexpr(" rated it | marked it | added it ",
reviews.clean[2*j-1])
reviews.df$reviewer[j] <- substr(reviews.clean[2*j-1], 5, auth.rat.sep-1)
# 提取评分
rat.end <- regexpr("· | Shelves| Recommend| review of another edition",
reviews.clean[2*j-1])
if (rat.end==-1){rat.end <- nchar(reviews.clean[2*j-1])}
reviews.df$rating[j] <- substr(reviews.clean[2*j-1], auth.rat.sep+10, rat.end-1)
# 移除评论中重复的部分
short.str <- substr(reviews.clean[2*j], 1, 50)
rev.start <- unlist(gregexpr(short.str, reviews.clean[2*j]))[2]
if (is.na(rev.start)){rev.start <- 1}
rev.end <- regexpr("\\.+more|Blog", reviews.clean[2*j])
if (rev.end==-1){rev.end <- nchar(reviews.clean[2*j])}
reviews.df$review[j] <- substr(reviews.clean[2*j], rev.start, rev.end-1)
}
现在我们的临时数据框已经填写完毕,我们可以把它的内容转移到主数据框中了。
global.lst <- list(global.df, reviews.df)
global.df <- rbindlist(global.lst)
最后,我们需要告诉RSelenium点击进入下一页的按钮,通过传递利用SelectorGadget定义CSS selector可以实现这个功能。同时,Relenium的效率比较低,可能在循环中不能及时响应,因此我们在每个循环的末尾让R等待3秒。
NextPageButton <- remDr$findElement("css selector", ".next_page")
NextPageButton$clickElement()
Sys.sleep(3)
结束所有循环后,我们要把最终结果保存成一个文件。
write.csv(global.df,output.filename)
最终结果如下:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-3001专家简介 徐杨老师,CDA数据科学研究院教研副总监,主要负责CDA认证项目以及机器学习/人工智能类课程的研发与授课,负责过中 ...
2025-01-29