
假设检验是统计学中的一种推断方法,用来判断两个样本或总体间的差异是由于抽样误差引起的还是本质差别造成的。R语言中提供了很多假设检验函数,如F检验,t检验和卡方检验等等。本篇文章介绍如何使用R语言中的这些函数进行假设检验。
二项分布检验
假设一个广告的点击率为0.02,更换新的广告创意后1000次曝光获得了23次点击,新广告在点击率上是否明显优于老广告?
H0:新广告与老广告效果无差异
H1:新广告效果优于老广告
#老广告点击率0.02,新广告1000次广告曝光获得23次点击是否明显优于老广告
binom.test(x =23,n = 1000,p = 0.02,alternative = "greater",conf.level = 0.95 )
p-value = 0.2778>0.05,在0.95的置信区间下接受原假设H0。新广告与老广告在点击率上没有显著差异。
#1000次访问0.02点击率下差异显著的临界值
qbinom(p = 0.95,size = 1000,prob = 0.02)
[1] 28
新广告在1000次广告曝光中点击量需要提升到28次以上才能明显优于老广告的效果。
泊松分布检验
假设一次市场推广活动中前一个小时有50人注册,后一个小时有60人注册,后一小时的注册人数是否明显高于前一小时?
H0:前一小时与后一小时注册人数无差异
H1:后一小时注册用户数量高于前一小时
#上一小时50人注册,下一小时60人注册,后一小时是否显著高于前一小时
poisson.test(x = 60,T = 50,alternative = "greater",conf.level = 0.95)
p-value = 0.09227>0.05,在0.95的置信区间下接受原假设H0,后一小时注册人数与前一小时无差异。
#将过去一周咨询用户数量赋给X
X=c(229,164,121,137,155,127,143)
#计算过去一周咨询量的均值
mean(X)
[1] 153.7143
#过去一周咨询用户数量是否达到目标
t.test(X,alternative = "greater",mu=153,conf.level = 0.95)
[1] 62
后一小时的注册用户数需要提升到62以上才能明显高于前一小时的注册用户数。
单样本t检验
假设某流量渠道的目标是每日带来150个咨询,在过去的一周带来的咨询用户数量分别为229,164,121,137,145,127,123,我们是否能认为该渠道已经达到目标,即每日的平均咨询量大于150?
这里使用单样本t检验,首先建立假设。
H0:每日平均咨询量不大于153,未达到目标。
H1:每日平均咨询量大于153,达到目标。
#将过去一周咨询用户数量赋给X
X=c(229,164,121,137,155,127,143)
#计算过去一周咨询量的均值
mean(X)
[1] 153.7143
#过去一周咨询用户数量是否达到目标
t.test(X,alternative = "greater",mu=153,conf.level = 0.95)
p-value = 0.4801>0.05,在0.95的置信区间下接受原假设H0,流量渠道的咨询量没有达到目标。
双样本t检验
假设两个流量渠道在过去的一周分布为网站带来咨询用户,这两个流量渠道带来的咨询用户数量是否有显著差异?
这里使用双样本t检验,首先建立假设。
H0:两个流量渠道带来的咨询用户数量没有显著差异。
H1:两个流量渠道带来的咨询用户数量存在有显著差异。
#流量渠道1带来的咨询用户数量赋值给X
X=c(229,164,121,137,155,127,143)
#流量渠道2带来的咨询用户数量赋值给Y
Y=c(175,120,187,144,117,184,135)
进行双样本t检验之前先进行方差检验,确定两组样本方差是否相同。 H0:两个总体方差相同 H1:两个总体方差不同
#等方差t检验,两个流量渠道带来的咨询用户数量是否有差异
t.test(X,Y,var.equal=TRUE,alternative = "two.sided")
p-value = 0.6469>0.05,在0.95的置信区间下接受原假设H0,两个总体方差相同。进行等方差t检验。
#等方差t检验,两个流量渠道带来的咨询用户数量是否有差异
t.test(X,Y,var.equal=TRUE,alternative = "two.sided")
p-value = 0.9125>0.05,接受原假设H0,在0.95的置信区间下两个流量渠道的咨询用户量没有显著差异。
成对样本t检验
假设网站对咨询流程进行了优化并进行了测试,那么改版后的效果是否明显优于改版前?
这里使用成对t检验,首先建立假设。
H0:改版后的效果与改版前无差异
H1:改版后的效果明显优于改版前
#改版前注册用户量赋给before
before=c(229,164,121,137,155,127,143)
#改版后注册用户量赋给after
after=c(217,284,155,190,158,170,180)
#改版前的咨询量是否小于改版后的咨询量
t.test(before-after,alternative = "less",conf.level = 0.95)
p-value = 0.02362<0.05,拒绝原假设H0,接受备择假设H1。在0.95的置信区间下改版后的效果明显优于改版前。
卡方检验
假设广告创意A1315次访问,65次转化,转化率4.94%,广告创意B939次访问,54次转化,转化率5.75%。广告创意B的效果是否优于广告创意A?数据分析师培训
这里使用卡方检验,首先建立假设。
H0:两个广告创意的效果无差异
H1:广告创意B的效果优于广告创意A
对源数据近整理,广告创意A1250次未购买,65次购买,广告创意B885次未购买,54次购买。以此建立列联表。
#创建列联表
X=c(1250,885,65,54)
dim(X)=c(2,2)
X
#使用卡方检验
chisq.test(X,correct = FALSE)
p-value = 0.3978>0.05,在0.95的置信区间下接受原假设H0,两个广告创意效果没有显著差异。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13