
R语言相关分布函数、统计函数的使用
分布函数家族: *func()
r : 随机分布函数
d : 概率密度函数
p : 累积分布函数
q : 分位数函数
func()表示具体的名称如下表:
例子
#r : 随机分布函数
#d : 概率密度函数
#p : 累积分布函数
#q : 分位数函数
#生成符合二项分布的数据
# 二项分布
# X~(N,P)
str(rbinom)
x<-rbinom(5,1,0.5) #做1次试验,假设正面概率为0.5,进行5次观察,每1次试验中正面出现的次数为别为 0 0 1 1 0
x<-rbinom(5,10,0.5) #做10次试验,假设正面概率为0.5,进行5次观察,每10次试验中正面出现的次数分别为 4 4 7 6 6
x
plot(x)
#概率密度函数
y<-dbinom(40,100,0.5) #做100次试验,假设正面概率为0.5,正面出现的次数为50次的概率是 0.01084387
y<-dbinom(40:50,100,0.5) ##做100次试验,假设正面概率为0.5,正面出现的次数分别为40到50的概率分别为: 0.01084387...
sum(y) #累计概率
y<-dbinom(0:100,100,0.5)
plot(y) #概率密度曲线
plot(0:100,y,pch=16) #概率密度曲线
#累计概率
z<-pbinom(50,100,0.5) #累计概率 小于等于50的概率为0.5397946
z<-dbinom(0:50,100,0.5)
sum(z)
plot(pbinom(0:100,100,0.5))
#分为点
q = qbinom(0.5,100,0.5) #在0.5分为点的数值为
q
单变量统计函数
均值:mean
中位数:median
分位数:quantile
方差:var
标准差:sd
频数表:table
偏度: Sk=sum((x[!is.na(x)]-Av)^3/Sd^3)/N #偏度
<0 左偏 >0 右偏
峰度: Ku=sum((x[!is.na(x)]-Av)^4/Sd^4)/N-3 #峰度
<3 坡度缓 >3 坡度陡
#单变量的描述统计
str(airquality) #R自带的空气质量数据集 str 结构structure的缩写
summary(airquality) #汇总数据包括 最小值、分位数、平均数、中位数、最大值、缺失值(NA's)
#平均值
mean(airquality$Ozone, na.rm = T) #na.rm=T 对缺失值进行删除,存在缺失值,结果为NA
mean(airquality$Temp, na.rm = T, trim = .01) #trim=.01 按百分比去掉头尾的数,删除极值
#中位数
median(airquality$Ozone, na.rm = T)
#加权平均数
temp100 <- rnorm(100,30,1) #通过正态分布生成100个随机数,平均值为30
w <- 1:100 #生成每个值的权重值
wmt = weighted.mean(temp100,w,na.rm = T) #进行加权平均计算
mt = mean(temp100,na.rm = T)
#几何平均数
x<- c(.045, .021, .255, .019)
xm = mean(x)
xg = exp(mean(log(x)))#exp指数 log对数
#中位数
median(temp100,na.rm = T)
#分位数
quantile(airquality$Temp, na.rm = T)
# 0% 25% 50% 75% 100% 50%中位数 0%最小值 25%上四分位数
# 56 72 79 85 97
quantile(airquality$Temp, na.rm = T, probs = c(0,0.1,0.9,1)) #通过probs自定义分位点
#方差
var(temp100)
#标准差
ts <- sd(temp100)
ts^2 #标准差的平方等于方差
#峰度和偏度
mysummary = function(x,...){
Av=mean(x,na.rm = T)
Sd=sd(x,na.rm = T)
N=length(x[!is.na(x)])
Sk=sum((x[!is.na(x)]-Av)^3/Sd^3)/N #偏度
Ku=sum((x[!is.na(x)]-Av)^4/Sd^4)/N-3 #峰度
result=c(argv=Av, sd=Sd, skew=Sk, kurt=Ku)
return (result)
}
mysummary(temp100)
# argv sd skew kurt
#30.109613023 1.033804058 -0.008489863 -0.597720454
#通过apply进行提交
apply(airquality[,c(-5,-6)],2,FUN=mysummary)
#Ozone Solar.R Wind Temp
#argv 42.129310 185.9315068 9.95751634 77.8823529
#sd 32.987885 90.0584222 3.52300135 9.4652697
#skew 1.209866 -0.4192893 0.34102753 -0.3705073
#kurt 1.112243 -1.0040581 0.02886468 -0.4628929
非单封分布:
#非单峰分布不能简单计算均值
x=rnorm(100,50,9)
y=rnorm(200,150,9)
z=c(x,y)
plot(density(z)) #使用密度曲线画图
abline(v=mean(z),col=3,lw=3)
双变量函数
协方差:cov
相关系数:cor 通过相关系数计算相关性
缺失值处理:行删除、配对删除等
#协方差
cov(airquality[,-5:-6],use = 'complete.obs') #行删除,处理缺失值
cov(airquality[,-5:-6],use = 'pairwise.complete.obs') #配对删除,处理缺失值
#相关系数
cor(airquality[,-5:-6],use = 'complete.obs') #行删除
cor(airquality[,-5:-6],use = 'pairwise.complete.obs') #配对删除
#结果为对称矩阵
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-09CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02