R语言相关分布函数、统计函数的使用
分布函数家族: *func()
r : 随机分布函数
d : 概率密度函数
p : 累积分布函数
q : 分位数函数
func()表示具体的名称如下表:
例子
#r : 随机分布函数
#d : 概率密度函数
#p : 累积分布函数
#q : 分位数函数
#生成符合二项分布的数据
# 二项分布
# X~(N,P)
str(rbinom)
x<-rbinom(5,1,0.5) #做1次试验,假设正面概率为0.5,进行5次观察,每1次试验中正面出现的次数为别为 0 0 1 1 0
x<-rbinom(5,10,0.5) #做10次试验,假设正面概率为0.5,进行5次观察,每10次试验中正面出现的次数分别为 4 4 7 6 6
x
plot(x)
#概率密度函数
y<-dbinom(40,100,0.5) #做100次试验,假设正面概率为0.5,正面出现的次数为50次的概率是 0.01084387
y<-dbinom(40:50,100,0.5) ##做100次试验,假设正面概率为0.5,正面出现的次数分别为40到50的概率分别为: 0.01084387...
sum(y) #累计概率
y<-dbinom(0:100,100,0.5)
plot(y) #概率密度曲线
plot(0:100,y,pch=16) #概率密度曲线
#累计概率
z<-pbinom(50,100,0.5) #累计概率 小于等于50的概率为0.5397946
z<-dbinom(0:50,100,0.5)
sum(z)
plot(pbinom(0:100,100,0.5))
#分为点
q = qbinom(0.5,100,0.5) #在0.5分为点的数值为
q
单变量统计函数
均值:mean
中位数:median
分位数:quantile
方差:var
标准差:sd
频数表:table
偏度: Sk=sum((x[!is.na(x)]-Av)^3/Sd^3)/N #偏度
<0 左偏 >0 右偏
峰度: Ku=sum((x[!is.na(x)]-Av)^4/Sd^4)/N-3 #峰度
<3 坡度缓 >3 坡度陡
#单变量的描述统计
str(airquality) #R自带的空气质量数据集 str 结构structure的缩写
summary(airquality) #汇总数据包括 最小值、分位数、平均数、中位数、最大值、缺失值(NA's)
#平均值
mean(airquality$Ozone, na.rm = T) #na.rm=T 对缺失值进行删除,存在缺失值,结果为NA
mean(airquality$Temp, na.rm = T, trim = .01) #trim=.01 按百分比去掉头尾的数,删除极值
#中位数
median(airquality$Ozone, na.rm = T)
#加权平均数
temp100 <- rnorm(100,30,1) #通过正态分布生成100个随机数,平均值为30
w <- 1:100 #生成每个值的权重值
wmt = weighted.mean(temp100,w,na.rm = T) #进行加权平均计算
mt = mean(temp100,na.rm = T)
#几何平均数
x<- c(.045, .021, .255, .019)
xm = mean(x)
xg = exp(mean(log(x)))#exp指数 log对数
#中位数
median(temp100,na.rm = T)
#分位数
quantile(airquality$Temp, na.rm = T)
# 0% 25% 50% 75% 100% 50%中位数 0%最小值 25%上四分位数
# 56 72 79 85 97
quantile(airquality$Temp, na.rm = T, probs = c(0,0.1,0.9,1)) #通过probs自定义分位点
#方差
var(temp100)
#标准差
ts <- sd(temp100)
ts^2 #标准差的平方等于方差
#峰度和偏度
mysummary = function(x,...){
Av=mean(x,na.rm = T)
Sd=sd(x,na.rm = T)
N=length(x[!is.na(x)])
Sk=sum((x[!is.na(x)]-Av)^3/Sd^3)/N #偏度
Ku=sum((x[!is.na(x)]-Av)^4/Sd^4)/N-3 #峰度
result=c(argv=Av, sd=Sd, skew=Sk, kurt=Ku)
return (result)
}
mysummary(temp100)
# argv sd skew kurt
#30.109613023 1.033804058 -0.008489863 -0.597720454
#通过apply进行提交
apply(airquality[,c(-5,-6)],2,FUN=mysummary)
#Ozone Solar.R Wind Temp
#argv 42.129310 185.9315068 9.95751634 77.8823529
#sd 32.987885 90.0584222 3.52300135 9.4652697
#skew 1.209866 -0.4192893 0.34102753 -0.3705073
#kurt 1.112243 -1.0040581 0.02886468 -0.4628929
非单封分布:
#非单峰分布不能简单计算均值
x=rnorm(100,50,9)
y=rnorm(200,150,9)
z=c(x,y)
plot(density(z)) #使用密度曲线画图
abline(v=mean(z),col=3,lw=3)
双变量函数
协方差:cov
相关系数:cor 通过相关系数计算相关性
缺失值处理:行删除、配对删除等
#协方差
cov(airquality[,-5:-6],use = 'complete.obs') #行删除,处理缺失值
cov(airquality[,-5:-6],use = 'pairwise.complete.obs') #配对删除,处理缺失值
#相关系数
cor(airquality[,-5:-6],use = 'complete.obs') #行删除
cor(airquality[,-5:-6],use = 'pairwise.complete.obs') #配对删除
#结果为对称矩阵
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30