
R语言数据预处理
一、日期时间、字符串的处理
日期
Date: 日期类,年与日
POSIXct: 日期时间类,精确到秒,用数字表示
POSIXlt: 日期时间类,精确到秒,用列表表示
Sys.date(), date(), difftime(), ISOdate(), ISOdatetime()
#得到当前日期时间
(d1=Sys.Date()) #日期 年月日
(d3=Sys.time()) #时间 年月日时分秒 通过format输出指定格式的时间
(d2=date()) #日期和时间 年月日时分秒 "Fri Aug 20 11:11:00 1999"
myDate=as.Date('2007-08-09')
class(myDate) #Date
mode(myDate) #numeric
#日期转字符串
as.character(myDate)
birDay=c('01/05/1986','08/11/1976') #
dates=as.Date(birDay,'%m/%d/%Y') #向量化运算,对向量进行转换
dates
# %d 天 (01~31)
# %a 缩写星期(Mon)
# %A 星期(Monday)
# %m 月份(00~12)
# %b 缩写的月份(Jan)
# %B 月份(January)
# %y 年份(07)
# %Y 年份(2007)
# %H 时
# %M 分
# %S 秒
td=Sys.Date()
format(td,format='%B %d %Y %s')
format(td,format='%A,%a ')
format(Sys.time(), '%H %h %M %S %s')
#日期转换成数字
as.integer(Sys.Date()) #自1970年1月1号至今的天数
as.integer(as.Date('1970-1-1')) #0
as.integer(as.Date('1970-1-2')) #1
sdate=as.Date('2004-10-01')
edate=as.Date('2010-10-22')
days=edate-sdate
days #时间类型相互减,结果显示相差的天数
ws=difftime(Sys.Date(),as.Date('1956-10-12'),units='weeks') #可以指定单位
#把年月日拼成日期
(d=ISOdate(2011,10,2));class(d) #ISOdate 的结果是POSIXct
as.Date(ISOdate(2011,10,2)) #将结果转换为Date
ISOdate(2011,2,30) #不存在的日期 结果为NA
#批量转换成日期
years=c(2010,2011,2012,2013,2014,2015)
months=1
days=c(15,20,21,19,30,3)
as.Date(ISOdate(years,months,days))
#提取日期时间的一部分
p=as.POSIXlt(Sys.Date())
p=as.POSIXlt(Sys.time())
Sys.Date()
Sys.time()
p$year + 1900 #年份需要加1900
p$mon + 1 #月份需要加1
p$mday
p$hour
p$min
p$sec
字符串处理
nchar() 、length()
paste()、outer()
substr()、strsplit()
sub()、gsub()、grep()、regexpr()、grepexpr()
#字符串
x='hello\rwold\n'
cat(x) #woldo hello遇到\r光标移到头接着打印wold覆盖了之前的hell变成woldo
print(x) #
#字符串长度
nchar(x) #字符串长度
length(x) #1 向量中元素的个数
#字符串拼接
board=paste('b',1:4,sep='-') #"b-1" "b-2" "b-3" "b-4"
board
mm=paste('mm',1:3,sep='-') #"mm-1" "mm-2" "mm-3"
mm
outer(board,mm,paste,sep=':') #向量的外积
#[,1] [,2] [,3]
#[1,] "b-1:mm-1" "b-1:mm-2" "b-1:mm-3"
#[2,] "b-2:mm-1" "b-2:mm-2" "b-2:mm-3"
#[3,] "b-3:mm-1" "b-3:mm-2" "b-3:mm-3"
#[4,] "b-4:mm-1" "b-4:mm-2" "b-4:mm-3"
#拆分提取
board
substr(board,3,3) #子串
strsplit(board,'-',fixed=T) #拆分
#修改
sub('-','.',board,fixed=T) #修改指定字符
board
mm #"mm-1" "mm-2" "mm-3"
sub('m','p',mm) #替换第一个匹配项 "pm-1" "pm-2" "pm-3"
gsub('m','p',mm) #替换全部匹配项 "pp-1" "pp-2" "pp-3"
#查找
mm=c(mm, 'mm4') #"mm-1" "mm-2" "mm-3" "mm4"
mm
grep('-',mm) #1 2 3 向量中1,2,3包含'-'
regexpr('-',mm) #匹配成功会返回位置信息,没有找到则返回-1
二、数据预处理
保证数据质量
准确性
完整性
一致性
冗余性
时效性
...
1、提取有效数据,需要业务人员配合(主观),及相关的技术手段保障
2、了解数据定义,统一对数据定义的理解
...
数据集成 : 对多数据源进行整合
数据转换 :
数据清洗 : 异常数据,缺失数据
数据约简 : 提炼,行,列
三、数据集成
通过merge对数据进行集成
#数据集成
#merge pylr::join (包::函数)
(customer = data.frame(Id=c(1:6),State=c(rep("北京",3),rep("上海",3))))
(ol = data.frame(Id=c(1,4,6,7),Product=c('IPhone','Vixo','mi','Note2')))
merge(customer,ol,by=('Id')) #inner join
merge(customer,ol,by=('Id'),all=T) # full join
merge(customer,ol,by=('Id'),all.x=T) # left outer join 左链接,左边数据都在
merge(customer,ol,by=('Id'),all.y=T) # right outer join 右链接,右边数据都在
#union 去重 在df1 和df2 有相同的列名称下
(df1=data.frame(id=seq(0,by=3,length=5),name=paste('Zhang',seq(0,by=3,length=5))))
(df2=data.frame(id=seq(0,by=4,length=4),name=paste('Zhang',seq(0,by=4,length=4))))
rbind(df1,df2)数据分析师培训
merge(df1,df2,all=T) #去重,不使用by
merge(df1,df2,by=('id')) #重名的列会被更改显示
四、数据转换
构造属性
规范化(极差化、标准化)
离散化
改善分布
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26