
用R语言作社群关系分析
在反映大量人群或事物之间的关系时,社交网络图可以清晰的展示’群体’的内含和外延。例如,群体的规模、核心、与其他群体的交叠情况。
社交关系图来表示应用人数和之间的交叠关系,这样更加美观,特别是当应用较多的时候。
两种应用使用人数的示意图
改进后的两种应用使用人数的示意图
数据的准备:
1、首先,整理一份原始数据,文件名是app_sub.txt,数据格式如下:
编号,应用名称
11111,滴滴打车
99999,美图秀秀
99999,微信
99999,优酷
22222,淘宝
22222,滴滴打车
22222,大众点评
……
代表有2980名用户使用APP的情况,各位在自行练习时可以采用随机函数来生成号码清单。
2.利用R读入数据。
g <- read.table(“app_sub.txt”,header= FALSE,sep = “,”,colClasses =c(“character”,”character”))
3.去除NA值
g1<-na.omit(g)
开始绘制简单的社交关系图:
1.简单的社交网络
library(igraph) #加载igraph包
x<-par(bg=”black”) #设置背景颜色为黑色
g2 = graph.data.frame(d = g1,directed = F); #数据格式转换
V(g2) #查看顶点
E(g2) #查看边
#使用layout.fruchterman.reingold方式呈现图形
plot(g2,layout=layout.fruchterman.reingold,vertex.label=NA) #显示网络图
上面的社交网络图中大部分顶点重叠在一起,根本不能看出社交网络中顶点之间的连接关系。下面需要对顶点和边的格式做调整。
3.对顶点和边的格式做调整
设置vertex.size来调整顶点大小, 设置vertex.color来改变显示颜色。
plot(g2,layout=layout.fruchterman.reingold,vertex.size=2, vertex.color=”red”,edge.arrow.size=0.05,vertex.label=NA) #设置vertex大小和颜色后显示网络图
上图中顶点明显归属于某个或某几个社区。但所有的点都是同一个颜色,不能直观呈现出社区的概念。
划分网络图中的社区:
1.利用igraph自带的社区发现函数实现社区划分Igraph包中社区分类函数有以下几种:
不同的分类算法,速度和适用社区网络大小都有所侧重。对于同一网络,采用什么样的分类算法需要实践后去人工判断是否符合预期。
下面利用只有两个社区网络的数据来验证walktrap.community和edge.betweenness.community分类结果的不同之处。
下图是walktrap算法,step=10的情况下得出的结果。原本的2个社区网络被分为66类。把两个大社区分成了一类,把两大社区重叠的部分分成了很多类。显然这不是我们所希望看到的分类结果。可见walktrap算法不太适合网络数量较小的情况。
下图是edge.betweenness算法的出的结果。社区网络被分成两类
edge.betweenness算法算法的呈现
2.美化图形(以顶点分类)
利用walktrap.community进行社区划分,对不同的社区赋值不同的颜色。为了呈现更多的点和线的关系,我们采用了透明化的处理方式。
com = walktrap.community(g2, steps = 10)V(g2)$sg=com$membershipV(g2)$color = rainbow(max(V(g2)$sg),alpha=0.8)[V(g2)$sg]plot(g2,layout=layout.fruchterman.reingold, vertex.size=1,vertex.color=V(g2)$color, edge.width=0.4,edge.arrow.size=0.08,edge.color = rgb(1,1,1,0.4),vertex.frame.color=NA,margin= rep(0, 4),vertex.label=NA)
完成最终的效果图:
1.美化图形(以边线分类)
另一种呈现方式,是点的颜色不变,将不同社区的连线颜色分类。
E(g1)$color=V(g1)[name=ends(g1,E(g1))[,2]]$color #为edge的颜色赋值
V(g1)[grep(“1”, V(g1)$name)]$color=rgb(1,1,1,0.8) #为vertex的颜色赋值
plot(g1,layout=layout.fruchterman.reingold, vertex.size=V(g1)$size, vertex.color= V(g1)$color, edge.width=0.3,edge.color = E(g1)$color,vertex.frame.color=NA,margin= rep(0, 4),vertex.label=NA)
通过上图可以看出本次实验数据中用户体量最大的APP分别是:微信、微博、淘宝、京东。社区交汇的点表示每两个APP之间的共有用户。例如,微信和微博的共有用户位于上图右上角橘黄色线条和黄色线条的交汇处。
社交网络图是近年来展示复杂网络的一种直观的方式。利用社区发现算法对复杂网络进行聚类,可以挖掘出复杂网络包含的深层意义。例如,发现公司组织架构的相关性,利用群体相似性进行“猜你喜欢”的推荐活动。数据分析师培训
利用R语言的igraph作社群挖掘的图
借助R语言的igraph包将用户的社交关系以图形化的方式展现出来,以歌手为例
据根据用户分享的歌曲,使用协同过滤算法计算歌手之间的关联关系。
使用了R语言的可视化包igraph
library(igraph)#读取数据,注意编码格式是utf-8singer <- read.csv('c:/data/tmp/singers-sub.csv', head=T,fileEncoding='UTF-8',stringsAsFactors=F)#加载数据框g <- graph.data.frame(singer)#生成图片,大小是800*800pxjpeg(filename='singers.jpg',width=800,height=800,units='px')
plot(g,
vertex.size=5, #节点大小
layout=layout.fruchterman.reingold, #布局方式
vertex.shape='none', #不带边框
vertex.label.cex=1.5, #节点字体大小
vertex.label.color='red', #节点字体颜色
edge.arrow.size=0.7) #连线的箭头的大小#关闭图形设备,将缓冲区中的数据写入文件dev.off()
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13