
用R语言作社群关系分析
在反映大量人群或事物之间的关系时,社交网络图可以清晰的展示’群体’的内含和外延。例如,群体的规模、核心、与其他群体的交叠情况。
社交关系图来表示应用人数和之间的交叠关系,这样更加美观,特别是当应用较多的时候。
两种应用使用人数的示意图
改进后的两种应用使用人数的示意图
数据的准备:
1、首先,整理一份原始数据,文件名是app_sub.txt,数据格式如下:
编号,应用名称
11111,滴滴打车
99999,美图秀秀
99999,微信
99999,优酷
22222,淘宝
22222,滴滴打车
22222,大众点评
……
代表有2980名用户使用APP的情况,各位在自行练习时可以采用随机函数来生成号码清单。
2.利用R读入数据。
g <- read.table(“app_sub.txt”,header= FALSE,sep = “,”,colClasses =c(“character”,”character”))
3.去除NA值
g1<-na.omit(g)
开始绘制简单的社交关系图:
1.简单的社交网络
library(igraph) #加载igraph包
x<-par(bg=”black”) #设置背景颜色为黑色
g2 = graph.data.frame(d = g1,directed = F); #数据格式转换
V(g2) #查看顶点
E(g2) #查看边
#使用layout.fruchterman.reingold方式呈现图形
plot(g2,layout=layout.fruchterman.reingold,vertex.label=NA) #显示网络图
上面的社交网络图中大部分顶点重叠在一起,根本不能看出社交网络中顶点之间的连接关系。下面需要对顶点和边的格式做调整。
3.对顶点和边的格式做调整
设置vertex.size来调整顶点大小, 设置vertex.color来改变显示颜色。
plot(g2,layout=layout.fruchterman.reingold,vertex.size=2, vertex.color=”red”,edge.arrow.size=0.05,vertex.label=NA) #设置vertex大小和颜色后显示网络图
上图中顶点明显归属于某个或某几个社区。但所有的点都是同一个颜色,不能直观呈现出社区的概念。
划分网络图中的社区:
1.利用igraph自带的社区发现函数实现社区划分Igraph包中社区分类函数有以下几种:
不同的分类算法,速度和适用社区网络大小都有所侧重。对于同一网络,采用什么样的分类算法需要实践后去人工判断是否符合预期。
下面利用只有两个社区网络的数据来验证walktrap.community和edge.betweenness.community分类结果的不同之处。
下图是walktrap算法,step=10的情况下得出的结果。原本的2个社区网络被分为66类。把两个大社区分成了一类,把两大社区重叠的部分分成了很多类。显然这不是我们所希望看到的分类结果。可见walktrap算法不太适合网络数量较小的情况。
下图是edge.betweenness算法的出的结果。社区网络被分成两类
edge.betweenness算法算法的呈现
2.美化图形(以顶点分类)
利用walktrap.community进行社区划分,对不同的社区赋值不同的颜色。为了呈现更多的点和线的关系,我们采用了透明化的处理方式。
com = walktrap.community(g2, steps = 10)V(g2)$sg=com$membershipV(g2)$color = rainbow(max(V(g2)$sg),alpha=0.8)[V(g2)$sg]plot(g2,layout=layout.fruchterman.reingold, vertex.size=1,vertex.color=V(g2)$color, edge.width=0.4,edge.arrow.size=0.08,edge.color = rgb(1,1,1,0.4),vertex.frame.color=NA,margin= rep(0, 4),vertex.label=NA)
完成最终的效果图:
1.美化图形(以边线分类)
另一种呈现方式,是点的颜色不变,将不同社区的连线颜色分类。
E(g1)$color=V(g1)[name=ends(g1,E(g1))[,2]]$color #为edge的颜色赋值
V(g1)[grep(“1”, V(g1)$name)]$color=rgb(1,1,1,0.8) #为vertex的颜色赋值
plot(g1,layout=layout.fruchterman.reingold, vertex.size=V(g1)$size, vertex.color= V(g1)$color, edge.width=0.3,edge.color = E(g1)$color,vertex.frame.color=NA,margin= rep(0, 4),vertex.label=NA)
通过上图可以看出本次实验数据中用户体量最大的APP分别是:微信、微博、淘宝、京东。社区交汇的点表示每两个APP之间的共有用户。例如,微信和微博的共有用户位于上图右上角橘黄色线条和黄色线条的交汇处。
社交网络图是近年来展示复杂网络的一种直观的方式。利用社区发现算法对复杂网络进行聚类,可以挖掘出复杂网络包含的深层意义。例如,发现公司组织架构的相关性,利用群体相似性进行“猜你喜欢”的推荐活动。数据分析师培训
利用R语言的igraph作社群挖掘的图
借助R语言的igraph包将用户的社交关系以图形化的方式展现出来,以歌手为例
据根据用户分享的歌曲,使用协同过滤算法计算歌手之间的关联关系。
使用了R语言的可视化包igraph
library(igraph)#读取数据,注意编码格式是utf-8singer <- read.csv('c:/data/tmp/singers-sub.csv', head=T,fileEncoding='UTF-8',stringsAsFactors=F)#加载数据框g <- graph.data.frame(singer)#生成图片,大小是800*800pxjpeg(filename='singers.jpg',width=800,height=800,units='px')
plot(g,
vertex.size=5, #节点大小
layout=layout.fruchterman.reingold, #布局方式
vertex.shape='none', #不带边框
vertex.label.cex=1.5, #节点字体大小
vertex.label.color='red', #节点字体颜色
edge.arrow.size=0.7) #连线的箭头的大小#关闭图形设备,将缓冲区中的数据写入文件dev.off()
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08