使用R进行倾向得分匹配(PSM)
根据维基百科,倾向得分匹配(PSM)是一种用来评估处置效应的统计方法。广义说来,它将样本根据其特性分类,而不同类样本间的差异就可以看作处置效应的无偏估计。因此,PSM不仅仅是随机试验的一种替代方法,它也是流行病研究中进行样本比较的重要方法之一。让我们举个栗子:
与健康相关的生活质量(HRQOL)被认为是癌症治疗的重要结果之一。对癌症患者而言,最常用的HRQOL测度是通过欧洲癌症研究与治疗中心的调查问卷计算得出的。EORTC QLD-C30是一个由30个项目组成,包括5个功能量表,9个症状量表和一个全球生活质量量表的的问卷。所有量表都会给出一个0-100之间的得分。症状量表得分越高代表被调查人生活压力越大,其余两个量表得分越高代表生活质量越高。
然而,如果没有任何参照,直接对数据进行解释是很困难的。幸运的是,EORTC QLQ-C30问卷也在一些一般人群调查中使用,我们可以对比患者的得分和一般人群的得分差异,从而判断患者的负担症状和一些功能障碍是否能归因于癌症治疗。PSM在这里可以以年龄和性别等特征,将相似的患者和一般人群进行匹配。
生成两个随机数据框
由于我不希望在本文使用真实数据,我需要生成一些仿真数据。使用Wakefield包可以很容易地实现这个功能。
第一步,我们创建一个名为df.patients的数据框,我希望它包含250个病人的年龄和性别数据,所有病人的年龄都要在30-78岁之间,并且70%的病人被设定为男性。
set.seed(1234)
df.patients <- r_data_frame(n = 250,
age(x = 30:78,
name = 'Age'),
sex(x = c("Male", "Female"),
prob = c(0.70, 0.30),
name = "Sex"))
df.patients$Sample <- as.factor('Patients')
summary函数会返回创建的数据框的基本信息,如你所见,患者平均年龄为53.7岁,并且大约70%为男性。
summary(df.patients)
## Age Sex Sample
## Min. :30.00 Male :173 Patients:250
## 1st Qu.:42.00 Female: 77
## Median :54.00
## Mean :53.71
## 3rd Qu.:66.00
## Max. :78.00
第二步,我们需要创建另一个名为df.population的数据框。我希望这个数据集的数据和患者的有些不同,因此正常人群的年龄区间被设定为18-80岁,并且男女各占一半。
set.seed(1234)
df.population <- r_data_frame(n = 1000,
age(x = 18:80,
name = 'Age'),
sex(x = c("Male", "Female"),
prob = c(0.50, 0.50),
name = "Sex"))
df.population$Sample <- as.factor('Population')
下方表格显示样本平均年龄为49.5岁,男女比例也大致相等。
summary(df.population)
## Age Sex Sample
## Min. :18.00 Male :485 Population:1000
## 1st Qu.:34.00 Female:515
## Median :50.00
## Mean :49.46
## 3rd Qu.:65.00
## Max. :80.00
合并数据框
在匹配样本之前,我们需要把两个数据框合并。先生成一个新变量Group来代表观测来自哪个全体(逻辑型变量),再添加另一个变量Distress来反应个体的痛苦程度。Distress变量是利用Wakefield包中的age函数创建的,可以发现,女性承受的痛苦级别更高。
mydata <- rbind(df.patients, df.population)
mydata$Group <- as.logical(mydata$Sample == 'Patients')
mydata$Distress <- ifelsmydata <- rbind(df.patients, df.population)
mydata$Group <- as.logical(mydata$Sample == 'Patients')
mydata$Distress <- ifelse(mydata$Sex == 'Male', age(nrow(mydata), x = 0:42, name = 'Distress'),
age(nrow(mydata), x = 15:42, name = 'Distress'))
当我们比较两类样本的年龄和性别分布时,我们可以发现明显的区别:
pacman::p_load(tableone)
table1 <- CreateTableOne(vars = c('Age', 'Sex', 'Distress'),
data = mydata,
factorVars = 'Sex',
strata = 'Sample')
table1 <- print(table1,
printToggle = FALSE,
noSpaces = TRUE)
kable(table1[,1:3],
align = 'c',
caption = 'Table 1: Comparison of unmatched samples')
更进一步,我们还发现一般人群的痛苦程度显著较高。
样本匹配
现在,我们已经完成了全部的准备工作,可以开始使用MatchIT包中的matchit函数来匹配两类样本了。函数中method=‘nearest’的设定指明了使用近邻法进行匹配。其他方法包括,次分类,优化匹配等。ratio=1意味着这是一一配对。同时也请注意Group变量需要是逻辑型变量。
set.seed(1234)
match.it <- matchit(Group ~ Age + Sex, data = mydata, method="nearest", ratio=1)
a <- summary(match.it)
为了后续工作的便利,我们将summary函数的输出赋值给名为a的变量。
在匹配万样本后,一般人群样本量所见到了和患者样本一致(250个观测)。
kable(a$nn, digits = 2, align = 'c',
caption = 'Table 2: Sample sizes')
根据输出结果,匹配后的年龄和性别分布基本一致了。
kable(a$sum.matched[c(1,2,4)], digits = 2, align = 'c',
caption = 'Table 3: Summary of balance for matched data')
倾向得分的分布可以使用MatchIt包中的plot函数进行绘制。
plot(match.it, type = 'jitter', interactive = FALSE)
输出如下:
保存匹配样本
最后,让我们把匹配好的样本保存在df.match数据框里。
df.match <- match.data(match.it)[1:ncol(mydata)]
rm(df.patients, df.population)
现在pacman::p_load(tableone)
table4 <- CreateTableOne(vars = c('Age', 'Sex', 'Distress'),
data = df.match,
factorVars = 'Sex',
strata = 'Sample')
table4 <- print(table4,
printToggle = FALSE,
noSpaces = TRUE)
kable(table4[,1:3],
align = 'c',
caption = 'Table 4: Comparison of matched samples'),我们可以对比两类人群间痛苦程度的差异是否依旧显著。
由于p值为0.222,学生t检验的结果不再显著。因此,PSM帮助我们避免犯下第一类错误。
P.S.1:本文只用的所有包可通过如下代码加载:数据分析师培训
pacman::p_load(knitr, wakefield, MatchIt, tableone, captioner)
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14