京公网安备 11010802034615号
经营许可证编号:京B2-20210330
使用R进行倾向得分匹配(PSM)
根据维基百科,倾向得分匹配(PSM)是一种用来评估处置效应的统计方法。广义说来,它将样本根据其特性分类,而不同类样本间的差异就可以看作处置效应的无偏估计。因此,PSM不仅仅是随机试验的一种替代方法,它也是流行病研究中进行样本比较的重要方法之一。让我们举个栗子:
与健康相关的生活质量(HRQOL)被认为是癌症治疗的重要结果之一。对癌症患者而言,最常用的HRQOL测度是通过欧洲癌症研究与治疗中心的调查问卷计算得出的。EORTC QLD-C30是一个由30个项目组成,包括5个功能量表,9个症状量表和一个全球生活质量量表的的问卷。所有量表都会给出一个0-100之间的得分。症状量表得分越高代表被调查人生活压力越大,其余两个量表得分越高代表生活质量越高。
然而,如果没有任何参照,直接对数据进行解释是很困难的。幸运的是,EORTC QLQ-C30问卷也在一些一般人群调查中使用,我们可以对比患者的得分和一般人群的得分差异,从而判断患者的负担症状和一些功能障碍是否能归因于癌症治疗。PSM在这里可以以年龄和性别等特征,将相似的患者和一般人群进行匹配。
生成两个随机数据框
由于我不希望在本文使用真实数据,我需要生成一些仿真数据。使用Wakefield包可以很容易地实现这个功能。
第一步,我们创建一个名为df.patients的数据框,我希望它包含250个病人的年龄和性别数据,所有病人的年龄都要在30-78岁之间,并且70%的病人被设定为男性。
set.seed(1234)
df.patients <- r_data_frame(n = 250,
age(x = 30:78,
name = 'Age'),
sex(x = c("Male", "Female"),
prob = c(0.70, 0.30),
name = "Sex"))
df.patients$Sample <- as.factor('Patients')
summary函数会返回创建的数据框的基本信息,如你所见,患者平均年龄为53.7岁,并且大约70%为男性。
summary(df.patients)
## Age Sex Sample
## Min. :30.00 Male :173 Patients:250
## 1st Qu.:42.00 Female: 77
## Median :54.00
## Mean :53.71
## 3rd Qu.:66.00
## Max. :78.00
第二步,我们需要创建另一个名为df.population的数据框。我希望这个数据集的数据和患者的有些不同,因此正常人群的年龄区间被设定为18-80岁,并且男女各占一半。
set.seed(1234)
df.population <- r_data_frame(n = 1000,
age(x = 18:80,
name = 'Age'),
sex(x = c("Male", "Female"),
prob = c(0.50, 0.50),
name = "Sex"))
df.population$Sample <- as.factor('Population')
下方表格显示样本平均年龄为49.5岁,男女比例也大致相等。
summary(df.population)
## Age Sex Sample
## Min. :18.00 Male :485 Population:1000
## 1st Qu.:34.00 Female:515
## Median :50.00
## Mean :49.46
## 3rd Qu.:65.00
## Max. :80.00
合并数据框
在匹配样本之前,我们需要把两个数据框合并。先生成一个新变量Group来代表观测来自哪个全体(逻辑型变量),再添加另一个变量Distress来反应个体的痛苦程度。Distress变量是利用Wakefield包中的age函数创建的,可以发现,女性承受的痛苦级别更高。
mydata <- rbind(df.patients, df.population)
mydata$Group <- as.logical(mydata$Sample == 'Patients')
mydata$Distress <- ifelsmydata <- rbind(df.patients, df.population)
mydata$Group <- as.logical(mydata$Sample == 'Patients')
mydata$Distress <- ifelse(mydata$Sex == 'Male', age(nrow(mydata), x = 0:42, name = 'Distress'),
age(nrow(mydata), x = 15:42, name = 'Distress'))
当我们比较两类样本的年龄和性别分布时,我们可以发现明显的区别:
pacman::p_load(tableone)
table1 <- CreateTableOne(vars = c('Age', 'Sex', 'Distress'),
data = mydata,
factorVars = 'Sex',
strata = 'Sample')
table1 <- print(table1,
printToggle = FALSE,
noSpaces = TRUE)
kable(table1[,1:3],
align = 'c',
caption = 'Table 1: Comparison of unmatched samples')
更进一步,我们还发现一般人群的痛苦程度显著较高。
样本匹配
现在,我们已经完成了全部的准备工作,可以开始使用MatchIT包中的matchit函数来匹配两类样本了。函数中method=‘nearest’的设定指明了使用近邻法进行匹配。其他方法包括,次分类,优化匹配等。ratio=1意味着这是一一配对。同时也请注意Group变量需要是逻辑型变量。
set.seed(1234)
match.it <- matchit(Group ~ Age + Sex, data = mydata, method="nearest", ratio=1)
a <- summary(match.it)
为了后续工作的便利,我们将summary函数的输出赋值给名为a的变量。
在匹配万样本后,一般人群样本量所见到了和患者样本一致(250个观测)。
kable(a$nn, digits = 2, align = 'c',
caption = 'Table 2: Sample sizes')
根据输出结果,匹配后的年龄和性别分布基本一致了。
kable(a$sum.matched[c(1,2,4)], digits = 2, align = 'c',
caption = 'Table 3: Summary of balance for matched data')
倾向得分的分布可以使用MatchIt包中的plot函数进行绘制。
plot(match.it, type = 'jitter', interactive = FALSE)
输出如下:
保存匹配样本
最后,让我们把匹配好的样本保存在df.match数据框里。
df.match <- match.data(match.it)[1:ncol(mydata)]
rm(df.patients, df.population)
现在pacman::p_load(tableone)
table4 <- CreateTableOne(vars = c('Age', 'Sex', 'Distress'),
data = df.match,
factorVars = 'Sex',
strata = 'Sample')
table4 <- print(table4,
printToggle = FALSE,
noSpaces = TRUE)
kable(table4[,1:3],
align = 'c',
caption = 'Table 4: Comparison of matched samples'),我们可以对比两类人群间痛苦程度的差异是否依旧显著。
由于p值为0.222,学生t检验的结果不再显著。因此,PSM帮助我们避免犯下第一类错误。
P.S.1:本文只用的所有包可通过如下代码加载:数据分析师培训
pacman::p_load(knitr, wakefield, MatchIt, tableone, captioner)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16