大数据催生新运营模式
如今,大数据如浪潮般席卷全球,越来越多的国家开始从战略层面认识大数据、发展大数据。目前国内外的大数据技术发展到哪一步?大数据给社会及个人生活带来了哪些变化?带着这些问题,本报记者近日采访了上海德拓信息技术股份有限公司创始人、CEO谢赟。
国内大数据应用领域将实现跨越发展
记者:如今大数据越来越火,大数据企业也雨后春笋般成长起来。在您看来,目前国内外的大数据技术发展到哪一步?
谢赟:大数据之所以越来越火,是因为它已经从概念变成了技术。大数据技术可以把我们多年建设所产生的数据更大范围、更深度地聚合起来,产生新的价值和运营模式。
现在世界越来越扁平,已经没有封闭的技术,国内外的大数据技术的掌握本身差别不大。任何团队只要更多的实践,就可以达到业界一流水平。
但是国内外在大数据应用领域还是有较大差距,技术掌握不等于应用落地,相对而言应用的广度和深度还是有一定差距。要用好大数据,首先要聚合数据,但是国内有行业壁垒,不会轻易开放自身数据,就很难真正达到多元数据聚合实现新运营模式。随着数据壁垒被不断打破,国内将在大数据应用领域实现跨越发展。
记者:结合您的经历,请您谈谈大数据给社会及个人生活带来了哪些变化?
谢赟:从2003年个人创业起,我就在数据领域探索。我觉得大数据的确能让我们的社会及个人生活进入到价值发现阶段。
什么是价值发现阶段?就是通过研究我们自身工作和生活的痛点来定义我们要解决的问题。贵阳交通大数据孵化器是我们交付的一个项目,在上面有很多企业在利用共享的数据进行创业创新,如,“车来了”公司在平台数据的支持下,对贵阳市民提供出行服务。
德拓信息帮助多个行业大数据应用方案落地
记者:德拓信息长期致力于大数据领域技术与产品的研究与实践,能否介绍下德拓信息的大数据产品?
谢赟:德拓信息研究的是数据智能。数据智能是人工智能的先导,只有将自身数据和外部数据融合起来,才有可能带来新变革和走向人工智能。
数据智能就是将数据降维技术变成标准化平台,让合作伙伴和用户将精力更多发放在行业大数据落地上,而不是技术本身。这样可以快速落地、快速实践,也有利于强强联合,我们称之为“Dana Inside”(DANA是德拓信息的智能大数据开发平台)。
记者:德拓信息已经主持了政务、交通、媒体、医疗等多行业大数据应用方案的落地,能否就其中一个谈一谈?
谢赟:在北京朝阳区的智慧物业试点工程中,我们和旋极股份一起为用户建立了“三六三”大数据中心平台,将各个委办局数据进行汇聚,再收集互联网上对应的数据资源,通过大数据技术分析、比对,并结合相关工作,完成“最后一公里”的政务管理,对于人口疏解、金融风险控制、安全生产隐患、淘汰落后产能、常住人口动态更新等进行全新管理。
数据一旦聚合可以产生奇妙的化学反应,再结合互联网的快速处理能力,大大降低了管理成本,提升了管理精准度。而这些数据需要有一个优质平台。随时随地对数据进行收集、聚合和分析,随着智慧物业工程的深入展开,德拓信息的智能大数据平台将发挥更大的效用。
记者:未来,德拓信息在大数据领域将有哪些拓展和创新?
谢赟:未来五年,德拓信息将联合100家开发者,支撑1000个大数据项目,这是德拓信息拓展的目标。
保障数据安全 技术和立法都很重要
记者:目前,交通、医疗等领域已经运用大数据技术让管理更加便捷有效,但很多领域信息孤岛现象依旧存在。在您看来,如何打破信息孤岛?
谢赟:数据要实现价值要融合更多元的数据,而这些数据往往分散在各个系统之中,很难集成。我认为打破信息孤岛取决于两个方面的力量。
第一是技术的力量。如果要低成本、高效率的聚合孤岛数据,就需要有一个成熟的数据集成平台,可以自动化地收集需要的数据,处理成标准的大数据结构。
第二是制度的力量。没有更高层面的制度要求,是很难推动数据开放的,也就打破不了信息孤岛的现状。很多地方把数据做成execl供大众下载,实际上是一种公开,而非鲜活数据的开放。数据开放需要各级管理层制定相关制度来保证。
记者:未来大数据产业发展会带来哪些风险?
谢赟:大数据技术的确将数据的价值进行了提升,但也带来了数据安全问题。数据安全包括两方面:一方面是数据集中后,如果被攻击、破坏,造成的影响更大;另一方面是数据隐私的安全,被泄密的事情时有发生。我认为,应该提高相关技术,保证大数据安全。当然,技术也不是万能的,国家立法也是保证数据安全非常重要的基础。
数据分析咨询请扫描二维码
数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21