大数据时代,用「大、快、杂、疑」四字箴言带你认识大数据
你可能有注意到,「大数据(Big Data)」在我们的生活裡已经掀起滔天巨浪,继云端运算(Cloud Computing)之后,俨然成为学术界跟科技业中最热门的潮字(Buzz Word),似乎每家公司都在进行有关的研究,三句不离大数据。究竟大数据是怎么出现,又代表着什么意思呢?
大数据(Big Data),巨量资料爆炸的时代
大数据(Big Data)—— 或称巨量资料,顾名思义,是指大量的资讯,当资料量庞大到资料库系统无法在合理时间内进行储存、运算、处理,分析成能解读的资讯时,就称为大数据。
“Big data is data that exceeds the processing capacity of conventional database systems.”
这些巨量资料中有着珍贵的讯息,像是关联性(Unknown Correlation)、未显露的模式(Hidden Patterns)、市场趋势(Market Trend),可能埋藏着前所未有的知识跟应用等着被我们挖掘发现;但由于资料量太庞大,流动速度太快,现今科技无法处理分析,促使我们不断研发出新一代的资料储存设备及科技,希望从大数据中萃取出那些有价值的资讯。
「Big Data」这个词最早由 IBM 提出,2010 年才真正开始受到注目,并成为专业用语登上维基百科1,算是「大数据」的正式问世。而在 2012 年时,《纽约时报》的专栏文章「The Age of Big Data2」更是宣告了「大数据时代」的来临。值得一提的是,大数据并不是什么新兴的概念,事实上,欧洲粒子物理研究中心 (CERN)的科学家已经面对巨量资料的问题好几十年了,处理着每秒上看 PB (Peta Bytes,註:PB = 1,024 TB)的资料量3。
TED-Ed 的影片讲解 Big Data 概念,简单又好懂:
一般来说,大数据涵盖的範围很广,定义也各家歧异,2012 年 Gartner 公司的分析师 Douglas Laney 给予大数据一个全新定义4:「大数据是大量、高速、及/或类型多变的资讯资产,它需要全新的处理方式,去促成更强的决策能力、洞察力与最佳化处理。」
于是大部份机构跟公司都将大数据的特性归类为「3Vs」或「4Vs」–– 资料量 Volume、资料传输速度 Velocity、资料类型(Variety),以及后来提出的第四个 V —— 真实性 Veracity。以下整理了 4Vs 简单的定义跟解释,可以从这四点切入认识大数据。
Volume 资料量
以前人们「手动」在表格中记录、累积出数据;现在数据是由机器、网路、人与人之间的社群互动来生成。你现在正在点击的滑鼠、来电、简讯、网路搜寻、线上交易... 都正在生成累积成庞大的数据,因此资料量很容易就能达到数 TB(Tera Bytes,兆位元组),甚至上看 PB(Peta Bytes,千兆位元组)或 EB(Exabytes,百万兆位元组)的等级。
Velocity 资料输入输出速度
资料的传输流动(data streaming)是连续且快速的,随着越来越多的机器、网路使用者,社群网站、搜寻结果每秒都在成长,每天都在输出更多的内容。公司跟机构要处理庞大的资讯大潮向他们袭来,而回应、反应这些资料的速度也成为他们最大的挑战,许多资料要能即时得到结果才能发挥最大的价值,因此也有人会将 Velocity 认为是「时效性」。
Variety 资料类型
大数据的来源种类包罗万象,十分多样化,如果一定要把资料分类的话,最简单的方法是分两类,结构化与非结构化。早期的非结构化资料主要是文字,随着网路的发展,又扩展到电子邮件、网页、社交媒体、视讯,音乐、图片等等,这些非结构化的资料造成储存(storage)、探勘(mining)、分析(analyzing)上的困难。
Veracity 真实性
这个词由在 Express Scripts 担任首席数据官(Chief Data Officer, CDO)的 Inderpal Bhandar 在波士顿大数据创新高峰会(Big Data Innovation Summit)的演讲中提出,认为大数据分析中应该加入这点做考虑,分析并过滤资料有偏差、伪造、异常的部分,防止这些「dirty data」损害到资料系统的完整跟正确性,进而影响决策。
大数据特性,谨记四字箴言:「大、快、杂、疑」
大数据资料量庞「大」(Volume)、变化飞「快」(Velocity),种类繁「杂」(Variety),以及真伪存「疑」(Veracity)。尤其在这资讯大爆炸时代,这些资料变得又多、又快、又杂、又真伪难分。
当然在「大数据」一词像病毒一样,侵入我们生活中的各个层面,也有越来越多人提出更多的「V」来解释大数据,像是 Volatility、Validity、Value、Victory 等,这些分歧的意见在这就不多详述,只要知道有这些说法、以后听到别人说到「7Vs」时不要觉得惊讶就行啦!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31