SPSS分析技术:低测度数据的相关性分析
如果遇到低测度数据,需要判断它与低测度数据或高测度数据之间的相关性,需要根据数据类型以及数据组合之间的关系来决定分析方法,如下图所示:
今天,我们介绍低测度数据之间相关性分析技术---交叉表分析。低测度数据之间相关性分析在社会生活中经常遇到,例如,在社会调查中,户籍与生活习惯之间的关系,户籍与爱好之间的关系等,这些都属于低测度数据相关性分析的范畴。
交叉表分析
选择菜单【描述统计】-【交叉表格】;再选择【Statistics】,对话框如下图所示:
对于不同组合的低测度数据类型,用交叉表判断它们的相关性,要用到不同的统计量:
定类变量的分析;由于定类变量的测度比较低,而且其大小和顺序无实际意义。需要用到右图的“名义”区域内的“相关系数”、“Phi和Cramer V”、“Lambda”、“不确定性系数”。
定序变量的分析;由于定序变量的数值大小有顺序的意义,而且其测度水平通常高于定类变量。常见的分析方法位于“有序”区域内,依次为Gamma系数、Somers系数、Kendall的tau-b系数和Kendall的tau-c系数四类。
定类-定距变量的分析;对于定类变量和定距变量构成的分析对,可以使用Eta关联系数。另外,如果定距变量的测度较高,还可以根据定距变量是否符合正态分布,以定距变量作为因变量,以定类变量作为因素变量,进行方差分析或者多独立因素的非参数检验。对于在不同因素水平下,如果定距变量具有显著性差异,那么可以认为定类变量和定距变量之间具有显著相关性。
二分变量-二分变量;McNemar相关系数用于检验两个有关联的二分变量之间的相关性分析。
范例分析
现在有一份数据文件,记录 880 人参于的关于早餐喜好的民意调查结果,该调查记录了参与者的年龄、性别、婚姻状况、生活方式以及早餐选择。对不同年龄段与早餐选择进行相关性分析。如下图所示:
分析思路
从上图可知,已经对年龄进行分段,对早餐选择进行分类,新的年龄分段变量(agecat)和早餐分类变量(breakfast)属于定类变量,需要用“名义”区域内的系数表示它们之间的相关性。
操作步骤
1、选择菜单【分析】-【描述统计】-【交叉表格】;将年龄分段选为行变量,将首选早餐选为列变量;将【显示集群条形图】选中。
2、选择【Statistics】,将名义区域内的系数都选中。
3、点击【继续】,在点击【确定】,进入分析。
结果解读
表格显示了不同年龄段和不同早餐选择之间的频数分布,从表格中可以看到频数在不同年龄段和早餐选择之间的频数变化。直方图可以直观的观察不同年龄段对应不同早餐选择的变化,从图中可知发现,绿色条随着年龄段的增加而增加,蓝色条则相反,灰色条基本没有变化,这些都说明不同年龄段和早餐选择之间存在相关性,但是相关性的强弱到底如何还需要进一步的数据。
2、相关系数;
表格显示三个相关系数,都是通过卡方统计量修改而来。从结果来看,介于0.4~0.6之间,说明不同年龄段和早餐选择之间存在一定的相关性。
3、相依系数、lambda系数和不确定系数
lambda系数表示变量之间预测结果的好坏,数值介于0~1之间,从结果看,年龄段与早餐选择之间的预测结果比较差。
不确定系数是以熵为标准的比例缩减误差,表示一个变量的信息在多大程度上来源于另一个变量。1表示程度最高,0表示程度最低。从结果看,这个系数的值也不高。
最终结论
从相关分析的结果来看,不同年龄段的人对早餐的选择存在差异性,也就是说两个定类变量之间存在一定的相关性,从交叉表、直方图和相关系数可以得到这个结果。但是它们之间的相依程度不高,从lambda系数,不确定系数低于0.2可以知道,所以它们之间是不能在这些样本的基础上得到准确的回归方程的。数据分析师培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12