【专家讲师】
李御玺 (Yue-Shi Lee),国立台湾大学计算机工程博士,铭传大学计算机工程学系教授兼系主任暨所长,铭传大学数据挖掘中心主任,厦门大学数据挖掘中心顾问,中国人民大学数据挖掘中心顾问。其研究领域专注于数据仓库、数据挖掘、与文本挖掘。
在其相关研究领域已发表超过260篇以上的研究论文,同时也是国科会与教育部多个相关研究计划的主持人。服务过的客户包括:中国工商局、中信银行、台新银行、联邦银行、新光银行、 新竹国际商业银行(现已并入渣打银行)、第一银行、永丰银行、远东银行、美商大都会人寿、嘉义基督教医院、台湾微软、零售业如赫莲娜(Helena Rubinstein)化妆品公司、特立和乐(HOLA)公司、航空公司如东方航空公司、中华航空公司、汽车行业如福特(Ford)汽车公司;政府行业如国税局等。
【课程大纲】
第一天 进阶机器学习技术(半监督式学习、利润最大化学习、目标类别不平衡学习、集成学习)及实操案例分享
传统模型评估方法与利润最大化评估方法
增益图与利润图
案例一:利润最大化模型实作: 以产品营销模型为例 (2018/12考题)
目标类别不平衡的问题
目标类别不平衡的处理方式
案例二:目标类别不平衡模型实作: 找出有资金需求的中小企业借贷户并销售其贷款产品 (2019/12考题)
案例三:半监督学习模型实作: 以电信业客户流失模型为例 (2019/6考题)
第二天 英文文本分析技术、Hugging Face经典英文模型使用及实操案例分享
案例五:英文文本分析模型实作: 从贴文的信息中预测此贴文是否能获得高响应 (2021/3)
案例六:英文文本分析模型实作: 从贴文的短信息中识别此贴文的情绪 (2021/6)
案例七:英文文本分析模型实作: 从使用者过去的观影行为、电影名称以及电影剧情描述的信息,预测使用者对电影的评分 (2022/06)
案例八:英文文本分析模型实作: 从产品描述的信息中,预测产品类别 (2022/12)
第三天 中文文本分析技术、Hugging Face经典中文模型使用及实操案例分享
中文文本数据预处理方法 (分词、词性标注、停用词处理、关键词撷取、词嵌入模型)
案例九:中文文本分析模型实作: 从产品的消费者评论中识别此评论的情绪是正评或负评 (2021/09)
案例十:中文文本分析模型实作: 从评论信息中识别此评论是否为不当的评论 (2021/12)
案例十一:中文文本分析模型实作: 从产品的图片及产品的描述信息中,预测哪些是相同的产品 (2023/03)
案例十二:中文文本分析模型实作: 从文章的描述信息中,预测此文章是否由AI所产生出来的 (2023/06)
【课程收益】
透过本课程的培训,上课学员应具备以下能力:
(1) 掌握利润最大化学习技术,并应用于产品营销模型的建置;
(2) 掌握目标类别不平衡学习技术,并应用于银行贷款模型的建置;
(3) 掌握半监督式机器学习技术,并应用于电信客户流失模型的建置;
(4) 掌握并实现集成学习技术,并应用于共享住宿日租价格模型的建置;
(5) 掌握英文文本分析的流程及预处理技术;
(6) 实作社群网站的英文贴文响应分析模型;
(7) 实作社群网站的英文贴文情绪分析模型;
(8) 实作电影网站的电影评分模型;
(9) 实作产品分类预测模型;
(10) 运用Hugging Face的大型英文预训练语言模型解决英文文本分析的问题;
(11) 掌握中文文本分析的流程及预处理技术;
(12)实作消费者评论的情绪分析模型;
(13) 实作不当评论的分析模型;
(14) 实作从产品的图片及产品的描述信息,预测相同产品的分析模型;
(15) 实作AI文章鉴识预测模型;
(16) 运用Hugging Face的大型中文预训练语言模型解决中文文本分析的问题;
【课程特色】
1.课程案例涵盖多个领域:课程案例涵盖了产品营销、中小企业借贷、电信业客户流失、共享住宿价格预测等多个领域,使学员能够应对不同领域的实际问题,并灵活运用机器学习技术解决挑战。2.强调文本分析技术:课程特别关注英文和中文文本分析技术,学员将学习英文和中文文本数据的预处理方法、情感分析、关键词提取等技术,培养学员在文本数据处理方面的专业能力。3.结合Hugging Face经典模型:课程将介绍Hugging Face经典英文和中文语言模型的使用,并与传统机器学习模型进行比较。学员将了解最新的自然语言处理技术,并能够评估和选择适合的模型来解决实际问题。【课程对象】
1.机器学习从业人员:对机器学习有一定基础的从业人员,希望进一步深入学习和应用进阶技术的专业人士。2.数据分析师:希望扩展文本分析技术和应用范围,提升在文本数据处理和解决方案设计方面的能力的数据分析师。3.业务决策者:希望了解机器学习在实际业务中的应用,掌握评估模型效果和选择合适模型的知识,以指导业务决策的管理者。其他对机器学习和文本分析感兴趣的学习者:对机器学习和文本分析技术感兴趣的学生、研究人员或爱好者,希望通过该课程系统学习相关知识和技能。
【课程时间】2023年8月25日-27日
【课程收费】
面授4200元/人,远程直播3600元/人。(CDA持证人会员、全日制在读本科、研究生享九折优惠)
【授课时间】
上午 9:00-12:00,下午13:30-16:30。
【其他安排】
1.报名即可获取课程案例数据集2.获取python数据分析视频预习课程3.面授同学课程第二天组织晚宴讨论4.课程录播视频有效期一年
详情咨询客服老师
更多考试介绍及备考福利请点击:CDA 认证考试中心官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31