R语言如何导入数据
在使用R的时候,我们肯定需要导入数据,现在总结一下如何导入不同类型的数据:
1.使用键盘输入数据
在导入数据比较少的时候,我们使用这种方法。R中的函数 edit() 会自动调用一个允许手动输入数据的文本编辑器。具体步骤如下:
(1) 创建一个空数据框(或矩阵) ,其中变量名和变量的模式需与理想中的最终数据集一致;
(2) 针对这个数据对象调用文本编辑器,输入你的数据,并将结果保存回此数据对象中。在下例中,你将创建一个名为 mydata 的数据框,它含有三个变量: age (数值型) 、 height(字符型)和 weight (数值型) 。然后通过edit()函数调用文本编辑器,键入数据,最后保存结果。编辑器界面如下,我们在这个界面可以输入变量值,也可以改变变量类型。
[plain] view plain copy
mydata<-data.frame(age=numeric(0),height=numeric(0),weight=numeric(0))
edit(mydata)
需要注意的是函数 edit() 事实上是在对象的一个副本上进行操作的。如果你没有将它其赋值到一个对象,你的所有修改将会全部丢失!
2.导入带分隔符的文本文件数据/CSV文件
read.table() 可以从带分隔符的文本文件中导入数据。此函数可读入一个表格格式的文件并将其保存为一个数据框。其语法如下:
read.table(file,header=value,sep="delimter",row.names="name")
file表示文件名,header表示表的首行是否包含变量值的逻辑值,sep 用来指定分隔数据的分隔符, row.names 用以指定一个或多个表示行标识符的变量,是个一可选参数,他还有许多参数,可以通过帮助文档进行查看。
3.导入Excel数据
虽然Excel可能是世界上最流行的数据分析工具,但R如果直接读取Excel数据还是比较困难的。
但我们可以在Excel中将数据将其导出为一个逗号分隔文件(csv) ,并使用前文描述的方式将其导入R中。在Windows系统中,你也可以使用 RODBC 包来访问Excel文件。但它好像只能在32位的R软件上面使用。虽然也有一些包可以这些问题,比如gdata,XLConnect,xlsReadWrite等,但它的有许多前提要求,比如Java环境,Per,或者32-bit R。因此一般情况将数据转换为csv文件或者将数据导入到数据库在导入在R。
4.导入XML数据
强大的R中有若干用于处理XML文件的包。 XML 包允许用户读取、写入和操作XML文件。因为我还没有遇到这种数据,因此还不太清楚xml包大体如何使用,感兴趣的朋友可以下载xml包,通过帮助文档进行学习。
5.从网页抓取数据
不仅Python可以爬取网页数据,R也可以在Web数据抓取。在这个的过程中,用户可以从互联网上提取嵌入在网页中的信息,并将其保存为R中的数据结构以做进一步的分析。 完成这个任务的一种途径是使用函数 readLines()下载网页,然后使用如 grep() 和 gsub() 一类的函数处理它。对于结构复杂的网页,可以使用RCurl 包和 XML 包来提取其中想要的信息。
6.导入SPSS数据
我们可以调用通过 foreign 包中的函数 read.spss() 将SPSS数据集可以导入到R中,也可以使用 Hmisc 包中的 spss.get() 函数。函数 spss.get() 是对 read. spss() 的一个封装,它可以为你自动设置后者的许多参数,让整个转换过程更加简单一致,最后得到数据分析人员所期望的结果。使用的时候我们只需要安装Hmisc 包,在较新的R中foreign 包已被默认安装。
[plain] view plain copy
mydata<-spss.get("data.sav",use.value.labels=TRUE)
这段代码中,data.sav 是要导入的SPSS数据文件, use.value.labels=TRUE 表示让函数将带有值标签的变量导入为R中水平对应相同的因子, mydataframe 是导入后的R数据框。
7.读入数据库数据
在访问数据库的时候,我们都需要一个odbc驱动 我们需要下载安装RODBC包。
数据分析咨询请扫描二维码
数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21