SPSS统计分析案例:多项logistic回归分析
在实际应用中,可能还会碰到因变量是多个分类的情况,并且不包含排序信息。比如视力分为轻度、中度、重度三个水平,此时如果想考察与视力评价有关联的指标,常用的二项logistic回归已经无法胜任。
幸好,SPSS软件为我们提供了多项logistic回归。
logistic回归对数据的要求
因变量:分类变量,要求是(含)三个以上分类水平;
自变量:可以是分类变量或连续变量,建议是分类变量;
协变量:必须是分类变量。
概念什么的,先不说,即使说,小兵我也说不清楚,看了案例自然就了解了。用SPSS学统计的好处就是这,辣眼睛的统计原理可以通过案例实践来逐步理解掌握。
案例数据
该假设数据文件涉及一份880人参于的关于早餐喜好的民意调查,该调查记录了参与者的年龄、性别、婚姻状况以及生活方式是否积极,每个个案代表一个单独的响应者。
调查机构想搞清楚是什么影响着受访人每天吃什么早餐。因变量“早餐选择”包括(1=早餐摊点、2=燕麦类、3=谷物类),自变量暂定年龄、婚姻状况以及生活态度。
分步骤说明
菜单栏中依次选择【分析】【回归】【多项logistic】,打开主面板。
因变量、自变量分别按照箭头指示移入对应的变量框内,然后最为重要的是,点击【参考类别】按钮,默认勾选【最后一个类别】。
什么意思呢?大意是指以因变量和自变量的最后一个分类水平为参照,用其他分类依次与之对比,考察不同水平间的倾向。
主面板中,点击【模型】按钮,打开【多项logistic回归:模型】对话框,勾选【主效应】,本例主要考察自变量年龄、性别、婚姻状况的主效应,暂不考察它们之间的交互作用,然后点击【继续】。
主面板中,点击【统计】按钮,设置模型的统计量。主要【伪R方】【模型拟合信息】【分类表】【拟合优度】这几项必选,其他可以默认不勾选。这些参数主要用于说明建模的质量。
主面板中,点击【保存】按钮,勾选【估算响应概率】,我们要求SPSS软件帮我们估算每个个案三类早餐的概率。
其余的参数主要和逐步回归有关系,本例采用主效应模型,人为指定进入模型的自变量,在其他研究中,可以根据情况选择逐步回归。
下主面板底部点击【确定】按钮,软件开始执行此处建模。
多项logistic回归结果解读
个案处理摘要表,列出因变量和自变量的分类水平及对应的个案百分比。建议在此表主要读取变量分类水平的顺序,比如自变量“年龄段”,第一个分类是“低于31岁”,第二个分类是“31-45”,第三个分类是“45-60”,第四个分类是“60岁以上”,尤其是看清楚最后一个分类,因为我们前面参数设置时要求是以最后一个分类最为对比参照组的。谁和谁对比,一定要搞清楚。
模型拟合信息表,读取最后一列,显著性值小于0.05,说明模型有统计意义,模型通过检验。
拟合优度表,原假设模型能很好地拟合原始数据,最后一列皮尔逊卡方显著性值0.952,概率较大,说明原假设成立,模型对原始数据的拟合效果良好。
伪R方表,依次列出的3个伪R方值(类似于决定系数)均偏低,最高0.4,说明模型对原始变量变异的解释程度一般,还有一部分信息无法解释,结果不算好。
模型似然比检验表,我们能看到最终进入模型的效应包括截距、年龄、婚姻状况、生活态度,而且最后一列显著性值表明,三个自变量(影响因素)对模型构成均有显著贡献,研究它们是有意义的。
参数估计表,列出自变量不同分类水平对早餐选择的影响检验,是多项logistic回归非常重要的结果。
第二列B值,即各自变量不同分类水平在模型中的系数,正负符号表明它们与早餐选择是正比还是反比关系。第六列是瓦尔德检验显著性值,此值小于0.05说明对应自变量的系数具有统计意义,对因变量不同分类水平的变化有显著影响。
比如,早餐摊点和谷物类早餐相比,31-45岁的年轻人更偏向于选择在早餐摊点吃早餐,这种可能性是60岁以上人的3.7倍;燕麦类和谷物类早餐相比,结婚与否对早餐的选择没有差别。
除此之外,我们前面还要求软件保存了每个个案早餐选择的概率,返回数据编辑器窗口,具体来看结果。
原始数据最右侧新增3个变量,依次为EST1_1、EST2_1、EST3_1,分别对应因变量“早餐选择”的三个分类水平(早餐摊、燕麦类、谷物类)的响应概率。比如第一个个案,他选择谷物类早餐的概率为0.55,在三种选择中数值最大,因此,模型会判定他选择谷物类早餐,这和原始记录的真值一致,说明模型判断准确。
当然,SPSS软件也输出了模型预测分类表,如下所示。
模型在预测燕麦类早餐选择倾向上准确率最高,达到77%,其他两个早餐选择的预测略低,模型总体预测准确率为57.4%,表现一般。前面伪R方数据显示,模型对总体变异的解释能力不足,这和总体预测准确率结论也一致。
数据分析咨询请扫描二维码
数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21