
SPSS统计分析案例:多项logistic回归分析
在实际应用中,可能还会碰到因变量是多个分类的情况,并且不包含排序信息。比如视力分为轻度、中度、重度三个水平,此时如果想考察与视力评价有关联的指标,常用的二项logistic回归已经无法胜任。
幸好,SPSS软件为我们提供了多项logistic回归。
logistic回归对数据的要求
因变量:分类变量,要求是(含)三个以上分类水平;
自变量:可以是分类变量或连续变量,建议是分类变量;
协变量:必须是分类变量。
概念什么的,先不说,即使说,小兵我也说不清楚,看了案例自然就了解了。用SPSS学统计的好处就是这,辣眼睛的统计原理可以通过案例实践来逐步理解掌握。
案例数据
该假设数据文件涉及一份880人参于的关于早餐喜好的民意调查,该调查记录了参与者的年龄、性别、婚姻状况以及生活方式是否积极,每个个案代表一个单独的响应者。
调查机构想搞清楚是什么影响着受访人每天吃什么早餐。因变量“早餐选择”包括(1=早餐摊点、2=燕麦类、3=谷物类),自变量暂定年龄、婚姻状况以及生活态度。
分步骤说明
菜单栏中依次选择【分析】【回归】【多项logistic】,打开主面板。
因变量、自变量分别按照箭头指示移入对应的变量框内,然后最为重要的是,点击【参考类别】按钮,默认勾选【最后一个类别】。
什么意思呢?大意是指以因变量和自变量的最后一个分类水平为参照,用其他分类依次与之对比,考察不同水平间的倾向。
主面板中,点击【模型】按钮,打开【多项logistic回归:模型】对话框,勾选【主效应】,本例主要考察自变量年龄、性别、婚姻状况的主效应,暂不考察它们之间的交互作用,然后点击【继续】。
主面板中,点击【统计】按钮,设置模型的统计量。主要【伪R方】【模型拟合信息】【分类表】【拟合优度】这几项必选,其他可以默认不勾选。这些参数主要用于说明建模的质量。
主面板中,点击【保存】按钮,勾选【估算响应概率】,我们要求SPSS软件帮我们估算每个个案三类早餐的概率。
其余的参数主要和逐步回归有关系,本例采用主效应模型,人为指定进入模型的自变量,在其他研究中,可以根据情况选择逐步回归。
下主面板底部点击【确定】按钮,软件开始执行此处建模。
多项logistic回归结果解读
![]()
个案处理摘要表,列出因变量和自变量的分类水平及对应的个案百分比。建议在此表主要读取变量分类水平的顺序,比如自变量“年龄段”,第一个分类是“低于31岁”,第二个分类是“31-45”,第三个分类是“45-60”,第四个分类是“60岁以上”,尤其是看清楚最后一个分类,因为我们前面参数设置时要求是以最后一个分类最为对比参照组的。谁和谁对比,一定要搞清楚。
模型拟合信息表,读取最后一列,显著性值小于0.05,说明模型有统计意义,模型通过检验。
拟合优度表,原假设模型能很好地拟合原始数据,最后一列皮尔逊卡方显著性值0.952,概率较大,说明原假设成立,模型对原始数据的拟合效果良好。
伪R方表,依次列出的3个伪R方值(类似于决定系数)均偏低,最高0.4,说明模型对原始变量变异的解释程度一般,还有一部分信息无法解释,结果不算好。
模型似然比检验表,我们能看到最终进入模型的效应包括截距、年龄、婚姻状况、生活态度,而且最后一列显著性值表明,三个自变量(影响因素)对模型构成均有显著贡献,研究它们是有意义的。
参数估计表,列出自变量不同分类水平对早餐选择的影响检验,是多项logistic回归非常重要的结果。
第二列B值,即各自变量不同分类水平在模型中的系数,正负符号表明它们与早餐选择是正比还是反比关系。第六列是瓦尔德检验显著性值,此值小于0.05说明对应自变量的系数具有统计意义,对因变量不同分类水平的变化有显著影响。
比如,早餐摊点和谷物类早餐相比,31-45岁的年轻人更偏向于选择在早餐摊点吃早餐,这种可能性是60岁以上人的3.7倍;燕麦类和谷物类早餐相比,结婚与否对早餐的选择没有差别。
除此之外,我们前面还要求软件保存了每个个案早餐选择的概率,返回数据编辑器窗口,具体来看结果。
原始数据最右侧新增3个变量,依次为EST1_1、EST2_1、EST3_1,分别对应因变量“早餐选择”的三个分类水平(早餐摊、燕麦类、谷物类)的响应概率。比如第一个个案,他选择谷物类早餐的概率为0.55,在三种选择中数值最大,因此,模型会判定他选择谷物类早餐,这和原始记录的真值一致,说明模型判断准确。
当然,SPSS软件也输出了模型预测分类表,如下所示。
模型在预测燕麦类早餐选择倾向上准确率最高,达到77%,其他两个早餐选择的预测略低,模型总体预测准确率为57.4%,表现一般。前面伪R方数据显示,模型对总体变异的解释能力不足,这和总体预测准确率结论也一致。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20