京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS分析技术:卡方检验;问卷(试卷)信度分析原理
今天介绍的是卡方检验。卡方检验是以卡方分布为基础的一种检验方法,主要用于分类变量(定义数据和定序数据),适用于频率数据的分析数据。常用于检验总体分布是否服从指定的分布的一种非参数检验的统计方法,可用于两个或多个频率间的比较、样本关联度分析和拟合优度检验等。拟合优度检验就是检验通过检验某一变量的实际观测频率和期望理论频率是否吻合,若吻合,则证明样本在该变量上的频率分布与总体理论分布相同。
卡方分布
卡方检验的基本假设
原假设:实际观测频率和期望理论频率分布之间无显著差异。
备择假设:实际观测频率和期望理论频率分布之间显著差异。
卡方统计量
很显然,实际频率与期望频率越接近,卡方值就越小。若卡方值为0,则上式中分子的每一项都必须是0,这意味着k类中每一类观察频率与期望频率完全一样,即完全拟合。卡方统计量可以用来测度实际观察频率与期望频率之间的拟合程度。
卡方检验的应用
推断耽搁样本的频率分布是否等于某种给定的理论分布;
检验两个及两个以上样本的总体分布是否相同;
定性资料的关联性分析;
线性趋势分析;
卡方检验步骤
建立虚无假设。为考察变量之间差异的显著性,卡方检验首先要建立虚无假设,一般假设为实际频率和理论频率无显著差异。
计算理论频率和卡方值。
依据分析计算结果进行统计推断。根据自由度和设定的显著性水平值,查卡方值表,将实际计算所得的卡方值在相应的显著水平上进行比较,据此做出接受或拒绝虚无假设的判断。
案例分析
社会科学研究领域,很多的研究数据都来自问卷调查。问卷收集数据效果的好坏,需要做信度分析,信度分析就是为了看看问卷的填写者是否是胡乱填写答案的,如果很大部分的问卷填写者都是随机选择选项的,选项的分布就会比较均匀,卡方检验可以用来判断每题答案的分布是否均值(显著性差异)。
某学校社科院为真实了解学生的英语学习态度,随机抽取部分学生做问卷调查,其中包括这样两个问题:1、你认为英语学习态度的决定因素是什么?2、你认为当前的大学生英语学习态度如何?
分析步骤
1、选择菜单【分析】-【非参数检验】-【旧对话框】-【卡方】,打开卡方检验对话框;将第1题:你认为英语学习态度的决定因素是什么?和第2题:你认为当前的大学生英语学习态度如何?选入检验变量列表。
2、期望范围;用于设定需检验的变量的取值范围,在此范围之外的取值将不进入分析。此设置共两个选项,即“从数据中获取”和“使用指定范围”。“从数据中获取”:表示检验变量的取值范围使用数据文件的最大值和最小值所确定的范围,该项为系统默认设置。“使用指定的范围”:即自行制定检验的取值范围,激活该项后,研究者可在“下限”和“上限”中分别输入检验范围的下限和上限。本例选择系统默认项。
3、期望值;用于指定已知总体的各分类构成比。包含“所有类别相等”和“值”两个选项。“所有类别相等”也就是设定各类别构成比例相等,即意味着检验的总体是服从均匀分布的。此为系统默认项。“值”用于自行定义类别构成的比例,每输入一个值后单击“添加”,系统自动将其输入右边的列表框。输入数值必须大于0,重复以上操作直到输完为止。输入值时要注意输入顺序一定要和变量递增顺序一致。本例选择此项设置。
4、检验精度设置;单击【精确】,打开精确检验。它包括3个选项:“仅渐进法”、“Monte Carlo”和“精确”。
“仅渐进法”:该项给出基于检验统计的渐进分布的显著性水平。渐进显著性是基于大数据集的假设,通常小于0.05的值被认为是显著的。如果数据集较小或者分布较差,它可能不会很好地指示显著性。该项为系统默认选项。
“Monte Carlo”:该项给出精确显著性水平的无偏估计,其计算方法是从与观察到的表具有相同维数和行列界限的参考报集中重复地取样。Monte Carlo法使分析不依赖于渐进法所必需的假设就能估计精确的显著性。当数据集太大而无法计算精确的显著性,而且数据又不满足渐进法的假设时,此法最有用。其中的“置信度”默认值为99%;“样本数”用于指定计算的样本数目,样本数目越大显著性水平越可靠,默认值为10000。
“精确”:该项用于精确地计算观察到的输出或更极端的输入的概率。通常认为小于0.05的显著性水平是显著的,表示行变量和列变量之间存在的某种关系。“每个检验的时间限制为”用于限定进行每个检验所使用的最长时间,如果超过30min,则用“Monte Carlo”法比较合适。
对于该项,本例选择系统默认设置,设置完毕后,单击“继续”。
5、输入结果检验;单击“确定”,输出卡方检验结果。
结果解读
由本次卡方检验的统计表可得:“题1”和“题2”的卡方值分别为243.195和85.366,而渐进显著性P值均为0.000,小于0.001,拒绝虚无假设,说明“题1”和“题2”的选项被实际勾选的频率与期望值差异非常显著。也就是说,大部分的问卷的填写者有能够认真的填写问卷,问卷收集数据的结果可信.数据分析师培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19