
SPSS与Streams的集成实现实时预测
SPSS Modeler 是一个数据挖掘工作台,提供了一个可了解数据并生成预测模型的最先进的环境。Streams 提供了一个可伸缩的高性能环境,对不断变化的数据进行实时分析,这些数据中包括传统结构的数据和半结构化到非结构化数据类型。
在实时处理需要高级分析时,使用Streams和SPSS集成,实现实时评分预测。实时应用预测分析的用例的示例包括网络安全、银行和信用卡欺诈检测、预测性维护,以及实时营销产品。
Streams + SPSS Analytics Toolkit 的特点
利用Streams实现高吞吐量、低延迟的评分
利用SPSS Modeler开发和建立评分模型
通过SPSSScoring Operator将模型部署到Streams
模型更新而无需暂停Streams
通过SPSS Collaboration and Deployment Services管理模型的生命周期
SPSS Analytics Toolkit for Streams
SPSSScoring operator
SPSSScoring operator实现在Streams应用中使用预定义的SPSS的预测模型进行评分预测,它假设预测模型已经在SPSS Moduler定义好并通过SPSS Solution Publisher导出这三个文件:
model.pim
model.par
model.xml
SPSSScoring 代码例子
stream<DataSchemaPlus> scorer = com.ibm.spss.streams.analytics::SPSSScoring(data) {parampimfile: getThisToolkitDir() +"/etc/PimParXml/model.pim"; parfile: getThisToolkitDir() +"/etc/PimParXml/model.par"; xmlfile: getThisToolkitDir() +"/etc/PimParXml/model.xml"; modelFields:"sex","income"; streamAttributes: s_sex, baseSalary+bonusSalary; output scorer: income = fromModel("income"), predLabel = fromModel("$C-beer_beans_pizza"), confidence = fromModel("$CC-beer_beans_pizza"); }
SPSSPublish operator
SPSSPublish operator 自动“发布”的一个模型文件的评分分支并总结所生成的文件,以便下游的Operator可以通过“分布”操作所创建或更新的PIM、PAR和XML文件,刷新他们的评分标准实施。通常情况下,SPSSPublish operator配合上游的DirectoryScan 或 SPSSRepository operator,及下游的SPSSScoring operator,即:
DirecoryScan/SPSSRepository -> SPSSPublish -> SPSSScoring
其中DirectoryScan 或 SPSSRepository operator检测到有新的模型文件可用,就将新模型的文件名发生个SPSSPublish operator。SPSSPublish的下游通常是SPSSSoring。当SPSSPublish获取到新模型,它就会生成SPSSSoring所需的PIM、PAR和XML文件,然后发生通知给SPSSSoring,通知也新的模型可用了。SPSSScoring收到通知后会刷新内部模型。
SPSSPublish代码例子:
stream<rstring strFilePath> strFile = DirectoryScan(){
param
directory : "/tmp";
pattern : "newmodel.str";
ignoreExistingFilesAtStartup : true;
config placement : host(P1);
}
stream<rstring fileName> notifier = com.ibm.spss.streams.analytics::SPSSPublish(strFile){
param
sourceFile: "newmodel.str";
targetPath: "/tmp";
config placement : host(P1);
}
stream<DataSchemaPlus> scorer = com.ibm.spss.streams.analytics::SPSSScoring(data;notifier) {
param
pimfile: getThisToolkitDir() +"/etc/PimParXml/model.pim";
parfile: getThisToolkitDir() +"/etc/PimParXml/model.par";
xmlfile: getThisToolkitDir() +"/etc/PimParXml/model.xml";
modelFields: "sex","income";
streamAttributes: s_sex, baseSalary+bonusSalary;
output
scorer:
income = fromModel("income"),
predLabel = fromModel("$C-beer_beans_pizza"),
confidence = fromModel("$CC-beer_beans_pizza");
config placement : host(P1);
}
SPSSRepository operator
SPSSRepository operator监视部署在SPSS Collaboration and Deployment Services库的对象的变化。当被监控的对象发生变化,相关通知则会发给所有的Listener。收到通知,SPSSRepostory会从Repostory下载该对象的新版本文件并将文件写到目标目录,这步操作成功之后,SPSSRepostory再提交描述文件已更新的事件给下游Operator。
Streams + SPSS 的参考架构
根据前面对SPSS Analytics Toolkit的功能描述,Streams + SPSS的参考架构可以由下图表示:
小结
本文通过对SPSS Analytics Toolkit和这些Toolkit与Streams集成参考架构的描述,为读者呈现了如何使用业界最好的数据挖掘工具SPSS和流数据分析平台Streams进行实时评分和预测。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26