
3种SPSS综合评价方法对比,帮你理解主成分分析
评价一个主体的指标越多,我们就多一个角度去考察它,但是指标多了之后也会有另外一个麻烦,就是如何综合使用它们来评价主体呢?
排名是生活中常见的事情,但一般情况下我们只知道最终的排名结果和排名参考指标,具体的排名算法我们并不清楚,今天我们将通过SPSS软件对排名问题进行研究,以探讨其潜在的逻辑!
首先导入我们得到的源数据,数据中包含排名、高校名称以及6个供参考的指标数值。有一点我们可以确定,那就是这个最终排名一定是从6个指标中得出的,那具体的算法是什么呢,我们将慢慢探讨。
方法一:简单加法排名
加法排名的特点是取长补短,和我们高考一样,我们高考的最终排名,就是通过加法排名算法得出的,此算法的基本特点就是取长补短,不同指标的数值是等价的。根据加法算法的思想,我们将6个指标的数值进行相加,生成新的总值,并对总值做降序排名,得到如下结果:
我们惊讶地发现,通过加法排名得到的最终结果和实际结果一模一样!
方法二:个案排秩加法排名
除了将各个指标的得分相加排名外,我们还可以对各个指标分别排名,然后将各个指标的排名相加,得到个案排秩相加排名。
打开“转换”—“个案排秩”,将我们要进行排名的六个指标选进“变量”中,然后设置最大值为1,点击确定,就可以得到六个新生成的变量,这六个新变量就是六个指标的排名,将其排名相加得最终排名,如下:
我们发现,个案排秩加法得到的结果和实际结果基本一致,除了18、42和119等异常值外,其余的排名符合实际排名,这说明个案排秩也非常接近实际排名。
方法三:主成份分析排名
但我们并不局限于这两种加法排名——简单加法排名和个案排秩加法排名。我们还想进一步探究排名背后的元素,即我们想做这样一个猜想:有不能把这六个排名指标给压缩成较少数的指标,并通过这几个指标来窥测排名的背后逻辑。
我们通过主成份分析,来分析这六个指标由哪几个主成份构成。
“分析”—“降维”—“因子分析”,将我们需要的六个变量拖拽到“变量”框中,然后其它保持默认【保持默认即不旋转,是主成份分析;如果进行旋转,则为因子分析】,点击确定,得到如下图:
1、下图表示了主成份对原来六个指标的抽取情况。Initial(初始值)都是1.000,Extraction(抽取)表示着抽取的百分比,我们发现主成份对六个指标的抽取情况比较不错,基本都在0.9以上。
2、第二步,我们看抽取出来的主成份解释(Explained)了原来六个指标的百分之多少。我们发现,两个主成份,即代表了总体的0.94,因此我们最终得到两个主成份。
3、那么,这两个主成份是哪两个因素呢。下图为我们展示了主成份矩阵(Component Matrix)。我们发现Component1基本上包含了前五个指标;Component2包含了第六个指标。我们给这两个主成份命名为:自然科学和社会科学。
通过之前的设置,我们能够得到两个主成份的得分,即不同学校在不同主成份(即在自然科学和社会科学)上的得分,如下:
我们发现,排名越高的学校,其两个主成份的得分都比较靠前。但由于目测水平有限,我们实在看不出有什么更深入的东西。因为我们做一个散点图,来查看不同学校在两个维度(社会科学和自然科学)上的分布情况。
“图形”—“图形构建程序”。在图表类型中,我们不用“简单散点图”,而是选择“分组散点图”。将左侧的可选变量中的两个主成份得分变量拖进画布中,使之充当X轴和Y轴。此外,我们还想把不同学校的名称加进去,以充当标签。
在“组/点ID”中,将设置Id标签前的复选框勾选上,不选择分组变量。然后把“高校”这一变量拖到画面的标签中,点击确定。
点击确定,我们得到如下的一张图。横轴代表的是“社会科学维度”,纵轴代表的是“自然科学维度”。我们发现不同的高校分布在不同的区域上,但具体的分布情况是怎样的呢,我们加入C轴垂直线和Y轴垂线。
添加两条垂直线后,我们发现清华大学在“自然科学维度”上一骑绝尘,其次是浙江大学,北京大学和南京 大学;而在“社会科学维度”上,中国人民大学排名第一。这样,我们就通过分组散点图的形式,更深入地了解了此次排名背后的逻辑!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08