大数据时代下,数据使用与隐私保护的博弈
3月5日《南方都市报》的一则报道引起了关注《我们仔细看了50家APP和网站的隐私协议,发现你同意了很多可怕的条款……》。这些可怕的条款包括,没有隐私保护、把个人的健康数据给一款阅读软件、把个人的信息分享给第三方网站和网站认为必要即可公开个人的私密信息等。这些信息不仅包括非个人信息,也包括个人信息,如个人的住址、职业以及敏感的健康信息等。
信息时代,网络服务商提供的软件(APP)和网站,所收集的无数信息成就了海量的大数据,商家和科技公司在通过大数据服务于每个人的同时,既可赚取大量的利润,同时也必然涉及另一个问题,有意和无意泄露个人隐私。如何在大数据时代保护个人隐私,在中国显得特别严重和紧迫。
主要表现为,商家以隐瞒和挟持的手段迫使用户放弃隐私保护。即便一些商家推出表面的隐私协议,要求用户签字,也表现为霸王条款。用户同意才能使用其软件,不同意就不能使用,而且只要使用了网站的任一服务,就表示使用者同意商家的隐私权政策。但这个政策只是商家个人的定义。
在信息时代,一方面,每个人的信息汇聚为大数据时当然不仅是为商家带来财富,也为公共利益,如攻克疾病、研发药物和反恐防恐提供了方便。根据Wikibon的报告,美国大数据产业的市场规模在2017年将达到500亿美元,这其中就包括医药公司利用基因检测软件分享个人数据,并以此为基础研发药物和新产品获取的利润。在中国,每年利用大数据获得的利益也早就超过100亿元人民币。正在召开的“两会”上,百度董事长兼首席执行官李彦宏的第一个提案就是“利用人工智能和大数据技术,帮助解决走失儿童问题”,这也是利用大数据推进和支持公益活动的具体体现。
即便大数据能解决人们生活和发展中的许多问题,而且也将是未来社会发展的一个基石和动力,但并不意味着个人隐私不需要保护。恰恰相反,大数据时代更需要保护个人隐私,才能让信息时代的技术最大化地有利于每个个体,也体现社会的公平和公正。
不过,在中国,保护个人隐私的第一个难题是,如何定义个人隐私,以及如何保护大数据涉及的隐私。中国的法律当然提及了公民个人隐私,并提出,“公民的个人数据不得非法搜集、传输、处理和利用”。但是, 中国的《民法通则》并未将隐私权作为一项独立人格权利加以保护,在隐私权方面,中国的现行立法并不清晰和明确。正因为如此,众多的网络服务商才可以在其软件和网络服务中强行以商家的规则来搜集并使用公民的隐私信息。
对此,应当根据中国的具体情况和参照发达国家对大数据时代提出的公民隐私权的解释,进行立法,以兼顾大数据的合理使用和个人隐私的保护,至少在二者之间寻求一种平衡。
美国对隐私权的规定大致有:公民个人享有秘密或者寻求隐匿的权利,同时保护公民个体的隐私权从住宅扩大到所有私人谈话与通讯过程;公民个人有匿名表达权,特别在政治意见领域;禁止某些运用公民私人信息的消极结果,如防止基因检测信息泄漏而遭到歧视;在私人信息脱离本人排他所有权之后,控制他人接触这些信息;个人有做出私人决定而不受政府干涉的权利,主要包括个人的健康、生育和性生活领域。
美国保护个人隐私既有传统,又看重现实的信息技术发展现状。1974年美国通过了《隐私法案》,2012年2月奥巴马政府又宣布推动《消费者隐私权利法案》,2015年3月美国白宫公布了《2015年消费者隐私权法案》草案。此外,针对上述公民隐私权利的内容也有许多具体的法律,如2008年出台的《基因信息非歧视法案》。
具体到个人隐私权利保护草案,也是一种妥协的结果。一方面,草案关注保护个人隐私,另一方面,又给予商家很多利用个人信息或大数据的权利。例如,草案的一个基本规定是,数据持有商必须要在透明度报告中提供更多关于其用户数据收集的信息;同时,个人访问商家储存的个人数据拥有更多的权利。但另一方面,草案也规定,商家可自行制定隐私政策。而且,如果消费者的要求被商家裁定为无理取闹的行为,商家可以选择无视这些要求。
对此草案,美国最大的信息技术公司微软表态称,微软支持《2015年消费者隐私权法案》,但并不意味着它完全认同法案里的每一项条款。微软首席隐私官布兰登•林奇(Brendon Lynch)认为,对于草案有些人反对,有些人赞同,但不管怎样这都是好消息,因为人们开始为之对话了。
从发达国家的情况看,大数据时代的信息利用和个人隐私保护一直存在博弈,中国现在的情况还达不到这一步,只是处于商家和权力机构强势获取个人信息并加以利用的阶段,公民隐私权的承认和保护还处于空白期,这种不平衡的状况也必将造成广泛的社会负面影响。对此,除了公众要将诉求通过两会代表传达到立法机构外,还需要政府的干预,才能形成大数据的合理应用与个人隐私有效保护的双赢结局。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21